
ARTIFICIAL NEURAL NETWORKS 
FOR DETECTION OF CRACKS AND FLAWS  

 
Codes Developed 

• Mlap Adaptive artificial neural networks package for detection of cracks and flaws in composite 
materials 

• FlawDec  Analysis of time-harmonic response and flaw detection for anisotropic sandwich plates  
Application            Non-destructive detection of cracks and flaws in composite materials 
  
Artificial neural networks is one of the most popular 
intelligent techniques widely applied in 
engineering. Excellent properties in modeling non-
linear problems and the robustness for noise 
environment make neural networks an ideal choice 
for the detection of cracks and flaws contained in 
composite materials. Application of neural 
networks is generally divided into two stages. The 
first stage is to train the neural networks with 
specified architecture by using the sample data 
that are obtained a priori from the forward solver. 
The second stage is to use the well-trained neural 
networks to generate the corresponding output by 
feeding in the measured signs. If necessary, the 
output can be improved by re-training the neural 
networks with adjusted sample data. Numerical 
examples on the detection of cracks in an 
anisotropic laminated plate are investigated, and 
the influence of noise in input signs on the 
detection result is also examined. This study 
shows the neural networks are very effective for 
the detection of cracks and flaws in composite 
materials. 
 
 

 

 
Intelligent computation – Neural networks technique 

 
Convergence of neural networks in training 
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A M-layers anisotropic laminated plate 
with a horizontal crack 
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                                Case 1                                     Case 2 
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                                Case 3                                       Case 4 

Errors of crack parameters detected by neural networks  
when no noise involved in the response data 

 

       
E

E

E
E

E

P

P

P
P

P

H

H

H

H H

1st 2nd 3rd 4th 5th
-30

-20

-10

0

10
E location

P length

H depth

    
P

P
P

P
P

H

H

H
H

H

1st 2nd 3rd 4th 5th
-30

-20

-10

0

10

 
                       Case 1 (noise: 5%)                    Case 3 (noise: 10%)  

Errors of crack parameters detected by neural networks 
when noise involved in the response data 
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ADVANCED PHASE TRANSITION 

 
Methods development:    Improved Molecular Dynamics (MD) and Monte Carlo (MC) 
Application                  :     Magnetofluidic separators, sealing and damping devices, etc. 
 
  

(2) No evidence is observed for the 
existence of a gas-liquid transition (Fig.2) in 
a broad density-temperature range in 
contrast with general belief and a variety of 
theoretical predictions 
 

Fig2 Classical phase diagram
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The relationship between the nature of the 
molecular interactions and the resulting phase 
diagram is the central theme of equilibrium 
statistical mechanics. Recent computations 
have provided new insight into the structural 
and orientating behavior of strongly interacting 
dipolar hard and soft spheres. The interactions 
are an isotropic Lennard-Jones (LJ) potential, 
which favors the condensation when the 
temperature decreases and an anisotropic 
dipole-dipole interaction potential, which tends 
to have a chain formation, i.e. 
 
   v(rij, µi, µj)=4ε{(σ/rij)12-(σ/rij)6] 
                   -3(µi⋅rij) (µj⋅rij)/rij

5+µi⋅µj/rij
3 

 
where ε is the LJ well depth, σ is the LJ 
diameter, µi is the dipole moment of particle i, 
and rij is the vector joining particles I and j. The 
first term on the right hand of the equation is the 
isotropic LJ potential and the second term is the 
anisotropic dipole-dipole interaction potential. 
The main conclusions of the numerical 
investigation can be summarized as the follows.
 
(1) At sufficiently low temperatures a dense 
system of dipolar hard spheres (or soft 
spheres) can spontaneously break its 
symmetry and order into a ferroelectric 
state. Polarized domains (Fig.1) form in the 
presence of a depolarizing field. 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig1 Polarized domains. The arrows show the 
direction of the polarization. 

 

(3) Instead, the particles are found to be 
associated with the chainlike structures (Fig3) at 
its near contact of the hard spheres and head-
to-tail alignment of the dipole moments. 
 

 
 
 
      Fig.3  Polymer like chain structures 
 
However, it has been argued that the Gibbs 
ensemble Monte Carlo (GEMC) method used in 
some of these simulations is unreliable in the 
relevant regime of temperature and density. 
Thus, it is still a problem whether a 
condensation or a formation of polymer like 
chain structure is dominant at the low 
temperatures and densities. 
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