

INTRODUCTION

The inspection of complex-shaped parts, which may contain multiple internal vanes and present highly curved surfaces, poses a major challenge to conventional NDE techniques. Cryoultrasonic NDE uses the remarkable properties of ice to transform a complex-shaped part into a simple-shaped solid which can then be inspected by combining ultrasonic array measurements with advanced imaging methods.

ULTRASONIC TRANSMISSION & REFLECTION

Single elem. probe

ר א_∂

Normal incidence transmitted and reflected wave intensities

$$\frac{I_T}{I} = \frac{4B}{(B+1)^2} \qquad \frac{I_I}{I}$$

B ratio between acoustic impedances, Z, of two media in contact

ρ mass density, c ultrasonic velocity

Total reflection occurs when a wave is incident on a fast medium, c_{f} , from a slow medium, c_{f} , at an angle equal or greater than α_{cr} =arcsin(c_{s}/c_{f}). Therefore, conventional immersion testing is not suitable to penetrate multiple water-metal interfaces. Ice provides a superior coupling medium which increases transmission and boosts α_{cr}

			Water Immersion			Ice (Ih) encapsulation		
Material	c [m s⁻¹]	[kg m ⁻³]	I _T /I	I _R /I	$lpha_{ m cr}$ [deg]	Ι _τ /Ι	I _R /I	$lpha_{ m cr}$ [deg]
Plexiglass	2730	1180	0.86	0.14	32.8	1.00	0.00	N/A
Aluminum	6320	2700	0.29	0.71	13.5	0.57	0.43	37.5
СМС	6850	2800	0.27	0.73	12.5	0.53	0.47	34.2
Ti-6Al-4V	6170	4430	0.19	0.81	13.9	0.41	0.59	38.6
Steel	5890	7800	0.12	0.88	14.6	0.27	0.73	40.8
Inconel	5720	8250	0.12	0.88	15.0	0.26	0.74	42.3
Copper	4750	8930	0.13	0.87	18.2	0.28	0.72	54.1

CRYOULTRASONIC NDE Dr. Francesco Simonetti

Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati

 $(B-1)^2$ $(B+1)^2$

UNIDIRECTIONAL FREEZING METHOD

Vacuum degassing at < 20 Torr

FIRST CRYOULTRASONIC EXPERIMENTS

Freeze front propagation model at constant cold plate temperature

$$h = \sqrt{atT}$$

h ice thickness [m] *t* time [sec] T cold plate temperature [C] a material constant

$$a = \frac{2k}{\lambda\rho}$$

k thermal conductivity W/mC λ latent heat [J/kg] ρ mass density [kg/m³]

Gb of ultrasonic data

- Ice is an ideal solid ultrasonic couplant owing to its high velocity, low attenuation, and excellent adhesion properties to metals
- Ice nanocomposites show significant potential to further increase velocity and mass density while reducing freezing time
- Unidirectional freezing technology ready to encase parts in crystal clear ice blocks free from bubbles and cracks
- First cryo-scanner integrated with ultrasonic array controller for rapid inspection of real components
- Ongoing work on advanced imaging methods to account for internal multiples and develop first application of transmission tomography for metal parts

■ Data acquired at 14 bits, 100 MHz sampling rate through USB 3 (160 MB/s) +LAN@ 1Gb 128-element full matrix capture (FMC) + writing to disk in under 10 sec **Full volume coverage of the specimen in the photograph is obtained by recording 360** FMC datasets in under one hour. A total of 5.9 M waveforms is acquired resulting in 30

ICE NANOCOMPOSITES

Freeze aqueous suspensions of nanoparticles to increase the impedance of ice

- Used alumina (Al₂O₃) nanoparticles
- Sonication to mix powder and water
- Stabilization achieved by adding HCI
- Suspension with 60% WT alumina content exhibits very low viscosity, like liquid paint

Monitoring the ultrasonic reflection from aluminum-liquid interfaces during freezing

Insulated container **Aluminum block**

CONCLUSIONS