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SUMMARY

This paper examines the theoretical bases for the smoothed finite element method (SFEM), which was
formulated by incorporating cell-wise strain smoothing operation into standard compatible finite element
method (FEM). The weak form of SFEM can be derived from the Hu–Washizu three-field variational
principle. For elastic problems, it is proved that 1D linear element and 2D linear triangle element in
SFEM are identical to their counterparts in FEM, while 2D bilinear quadrilateral elements in SFEM are
different from that of FEM: when the number of smoothing cells (SCs) of the elements equals 1, the
SFEM solution is proved to be ‘variationally consistent’ and has the same properties with those of FEM
using reduced integration; when SC approaches infinity, the SFEM solution will approach the solution of
the standard displacement compatible FEM model; when SC is a finite number larger than 1, the SFEM
solutions are not ‘variationally consistent’ but ‘energy consistent’, and will change monotonously from
the solution of SFEM (SC= 1) to that of SFEM (SC → ∞). It is suggested that there exists an optimal
number of SC such that the SFEM solution is closest to the exact solution. The properties of SFEM are
confirmed by numerical examples. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

For several decades, many useful numerical methods have been proposed to develop lower-order
finite elements with good performance in solving practical problems, especially, for enhanced
accuracy in coarse meshes and free of spurious locking. Although there are some exceptions, most
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of them can be grouped into the equilibrium models based on the complementary energy principle,
the displacement models based on the potential energy principle [1] and the mixed models which
in addition to displacements, assume one or more independent fields such as stresses or strains [2],
such as the assumed strain method proposed by Simo and Hughes [3] based on the Hu–Washizu
principle [4]. The key point of the method lies in the strain field in which the standard discrete
gradient operator is replaced by an assumed gradient operator. One of the assumed strain methods
is the smoothed strain method, proposed by Chen et al. [5], in the context of mesh-free method. The
aim of this method is to stabilize the nodal integration for a Galerkin mesh-free method by using a
strain smoothing technique. The method shows higher efficiency, desired accuracy and convergent
properties. Yoo et al. then extended the stabilized nodal integration to the natural-element method
and solved the nearly incompressible problems without any modification of integration scheme [6].
Liu et al. introduced the nodal integration into the point interpolation method and the radial point
interpolation method to install linear conformability and good performance has been observed for
many problems including contact problems [7].

So far, displacement finite element method (FEM) models have been used most popularly
for engineering problems. However, it is well known that FEM produces the overestimation of
stiffness matrix, and the model is in general too stiff with the internal strain energy being under-
estimated [1]. The consequence is that the solution is always smaller than the real solution. In
addition, because mapping and co-ordinate transformation is involved in the FEM, its element is
not allowed to be of arbitrary shape. A necessary condition for a 4-node isoparametric element
is that no interior angle is greater than 180◦ and the positivity of Jacobian determinant should
be ensured in numerical implementation [8–10]. This not only increases the computational cost
but also limits the ability of the application of FEM to the large deformation problems with
severe element distortion. In the effort of overcoming these problems of FEM, Liu et al. pro-
posed for the first time a smoothed finite element method (SFEM) by combining the existing
FEM technology and the strain smoothing technique of mesh-free methods [11]. In this method,
elements are used as in the FEM, and smoothing operations are performed over the elements.
Depending on the requirement of accuracy and stability, an element may be further subdivided
into several smoothing cells (SCs), and the smoothing operation is then performed for each SC
within an element. Galerkin weak form is used as in FEM, but smoothed strains are used for
computing the stiffness matrix. When choosing a constant smoothing function, area integrations
over the cell in the weak form become line integrations along the cell boundaries. Hence, no
derivative of shape functions is involved in computing the field gradients to form the stiffness
matrix. Numerical studies have demonstrated that SFEM shows some superiorities over the stan-
dard FEM using 4-node isoparametric elements. For examples, (1) SFEM gives better results
than that of FEM in both displacement and energy because the stiffness of SFEM is softer than
that of FEM; (2) domain discretization of SFEM is more flexible than FEM when the severe
distorted, tile and polygonal elements can be used; (3) field gradients are computed directly using
only shape functions itself; (4) construction of shape functions can be much easier than that in
the FEM, which practically allows explicit interpolations of field variables; and (5) many exist-
ing algorithms of FEM can be modified easily and applied to SFEM. Most importantly, these
good features are gained without increasing the efforts both in modelling and computation, and
the changes to the existing FEM code are also very minimum. All these features have been
demonstrated in detail by Liu et al. using many numerical examples and elements of complex
shapes including extremely distorted quadrilateral elements, polygon and tile elements [11]. How-
ever, the theoretical bases of SFEM are still not very clear, the related theory has not been set
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up and properly proved, and rigorous formulations have not been given out and examined in
detail.

This paper aims to establish the theoretical foundations for SFEM. The weak form will be
obtained based on the Hu–Washizu three-field variational principle. The properties of SFEM will
be examined. All these theoretical findings will be confirmed with numerical tests.

The paper is outlined as follows. In Section 2, the idea of SFEM is briefly introduced. In Section
3, variational principle for SFEM is described. The properties of the single-cell bilinear quadrilateral
smoothed finite element are analysed in Section 4. In Section 5, variational consistency of SFEM
is examined. Section 6 presents numerical examples to verify the formulations and properties of
the SFEM. Some concluding remarks are made in the Section 7.

2. BRIEFING ON THE SMOOTHED FINITE ELEMENT METHOD (SFEM)

2.1. Basic equations for elasticity [9]
Consider a 2D static elasticity problem governed by equilibrium equations defined in the domain
� bounded by � and �= �u ∪�t ,�u ∩ �t =∅

∇T
Sr+ b= 0 in � (1)

where 0 is a null vector, r is the stress tensor written in vector form

rT ={�xx �yy �xy} (2)

b is the vector of external body forces in the x- and y-direction

b=
{
bx

by

}
(3)

and ∇S is a differential operator matrix given by

∇S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
�x

0

0
�
�y

�
�y

�
�x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

Boundary conditions are given as follows:

u= u on �u (5)

nTr= t on �t (6)

where u={ux uy}T is the prescribed displacement vector on the essential boundary �u; t={t x t y}T
is the prescribed traction vector on the natural boundary �t ; n is the unit outward normal matrix
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given by

n=
⎡
⎢⎣
nx 0

0 ny

ny nx

⎤
⎥⎦ (7)

and u is the displacement vector of the form

u=
{
u

v

}
(8)

where u, v are the displacement components in the x- and y-direction, respectively.
The strain–displacement relation or the compatibility equation is given by

e=∇Su (9)

where e is the strain tensor written in vector form

eT = {�xx �yy �xy} (10)

The stress–strain relation or the Hooke’s law is

r=De (11)

where D is a symmetric positive definite (SPD) matrix of material constants.

2.2. The finite element method (FEM) (see, e.g. References [8–10])
The discrete equations are generated from the Galerkin weak form∫

�
(∇S�u)TD(∇Su) d� −

∫
�
(�u)Tb d� −

∫
�t

(�u)Tt d�= 0 (12)

where u∈ H1(�) are trial functions and �u∈ H1
0 (�) are test functions. Here, H1(�) denotes the

Sobolev space of functions with square integrable derivatives in �, and H1
0 (�) is the subset of

H1(�) with vanishing values on �u [2]. The FEM uses the following trial and test functions:

uh(x)=
NP∑
I=1

NI (x)dI , �uh(x) =
NP∑
I=1

NI (x)�dI (13)

where NP is the number of the nodal variables of the element, dI =[uI vI ]T is the nodal displace-
ment vector and

NI (x)=
[
NI (x) 0

0 NI (x)

]

is the shape function matrix which satisfies the conditions

NI (xJ ) = �I J and
NP∑
I=1

NI (x)= 1 (14)

where �I J is the Kronecker delta.
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By substituting the approximations, uh and �uh , into the weak form and invoking the arbitrariness
of virtual nodal displacements, Equation (12) yields the standard discretized algebraic system
equation:

KFEMd= f (15)

where KFEM is the stiffness matrix, f is the element force vector, with entries of

KFEM
I J =

∫
�
BT
IDBJ d� (16)

fI =
∫

�
NT

I (x)b d� +
∫

�t

NT
I (x)t d� (17)

with the strain matrix defined as

BI (x)=∇SNI (x)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�NI (x)
�x

0

0
�NI (x)

�y

�NI (x)
�y

�NI (x)
�x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

2.3. The smoothed finite element method (SFEM) [11]
The SFEM combines the existing FEM procedure with a strain smoothing operation. In the SFEM
method, elements are used as in the FEM, and smoothing operations are performed over the SCs.
The final discretized algebraic system equation has the form

KSFEMd= f (19)

where KSFEM is the smoothed stiffness matrix given by

KSFEM
I J =

SC∑
C=1

∫
�C

B̃T
C IDB̃C J d�=

SC∑
C=1

B̃T
C IDB̃C J AC (20)

where AC = ∫
�C

d� is the area of domain �C , SC is the number of SCs that divides from

the domain � such that �=�1 ∪ �2 ∪ · · · ∪�SC and �1 ∩�2 ∩ · · · ∩ �SC =∅, and B̃C I is the
smoothed strain matrix which is obtained by the following strain smoothing operation:

ẽhC =
∫

�C

eh(x)�C (x) d� (21)

where eh(x)=∇Suh(x) is the strain obtained from displacement with compatibility, �C (x) is a
given smoothing function that satisfies at least unity property∫

�C

�C (x) d�= 1 (22)
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Using the following constant smoothing function

�C (x)=
{
1/AC , x∈ �C

0, x /∈ �C

(23)

and applying a divergence theorem, one can get the smoothed strain of the domain �C

ẽhC =
∫

�C

∇Suh(x)
1

AC
d�= 1

AC

∫
�C

∇Suh(x) d�

= 1

AC

∫
�C

nC (x)uh(x) d� (24)

where �C is the boundary of the domain �C , and nC (x) is the outward normal vector matrix on
the boundary �C and has the form similarly to Equation (7).

Substituting Equation (13) into Equation (24), one obtains the smoothed strain as

ẽhC =
NP∑
I=1

B̃C IdI (25)

where the smoothed strain matrix B̃C I is calculated by

B̃C I= 1

AC

∫
�C

NI (x)nC (x) d�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

AC

∫
�C

NI (x)nCx (x) d� 0

0
1

AC

∫
�C

NI (x)nCy(x) d�

1

AC

∫
�C

NI (x)nCy(x) d�
1

AC

∫
�C

NI (x)nCx (x) d�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)

It is easy to reveal the relation between the smoothed strain matrix B̃C I with the standard strain
matrix of FEM BI (x)= ∇SNI (x) through the following equation:

B̃C I =
∫

�C

1

AC
NI (x)nC (x) d�=

∫
�C

1

AC
∇SNI (x) d�

= 1

AC

∫
�C

BI (x) d� (27)

Equation (27) states that the smoothed strain matrix B̃C I is the average value of the standard strain
matrix BI (x) over the smoothing domain �C .

Note that the SFEM allows us to create a sequence of SFEM model by using different number
of SCs. We will reveal and prove the bound properties of the sequence of SFEM models in the
following sections.
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Lemma 1
The assumed strains using strain smoothing defined in Equation (21) ensure a stress equilibrium
state within the cell that is free of body force.

Proof
Using Equation (21), the assumed strains become constants at any point in the cell. The stresses
obtained using Equation (11) are therefore also constants in the cell. These constant stresses satisfy
naturally the equilibrium equation (1) when b= 0. �

Lemma 1 is an extremely powerful statement: application of strain smoothing to a cell in
the problem domain results in a stress equilibrium in the cell. We, therefore, call the smoothing
operation a stress equilibrator.

Lemma 2
The assumed strains, using Equation (21), will not be compatible with an assumed displacement
field that is higher than (strictly) first order.

Proof
If the order of the displacement field is higher than first order, the strain produced by Equation
(9) will not be constant. The assumed strains are, however, constants. Hence the compatibility
condition is violated. �

Lemma 2 implies that the stress equilibrator will destroy the compatibility in the cells with
assumed displacement fields of bilinear or higher order.

3. VARIATIONAL PRINCIPLE FOR SFEM

In this section, the Galerkin weak form for SFEM is established from the Hu–Washizu three-field
variational principle [12]:

U (u, ẽ, r) =
∫

�

1

2
ẽTDẽ d� −

∫
�
rTẽ d� +

∫
�
rT(∇Su) d�

−
∫

�
uTb d� −

∫
�t

uTt d� −
∫

�u

(u − u)T(nTr) d� (28)

where ẽ is the assumed strain vector.
If stresses r are expressed in term of strains ẽ through the stress–strain relation r=Dẽ and

u= u on the essential boundary �u , we will obtain a two-field variational principle U (u, ẽ). It
is the modified Hellinger–Reissner variational principle with strains ẽ and displacements u as
independent field variables [12]:

U (u, ẽ) =−
∫

�

1

2
ẽTDẽ d� +

∫
�
(Dẽ)T(∇Su) d� −

∫
�
uTb d� −

∫
�t

uTt d� (29)
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Performing the variation using the chain rule, one obtains

�U (u, ẽ) = −
∫

�
�ẽTDẽ d� +

∫
�

�ẽTD(∇Su) d� +
∫

�
ẽTD(∇S�u) d�

−
∫

�
�uTb d� −

∫
�t

�uTt d�= 0 (30)

Substituting approximations (13), (25) into (30) and using the arbitrary property of variation,
we obtain

Ktwo-fieldd= f (31)

where Ktwo-field is the smoothed stiffness matrix, and f is the element force vector given by

Ktwo-field
I J = −

∫
�
B̃T
IDB̃J d� + 2

∫
�
B̃T
IDBJ (x) d� (32)

fI =
∫

�
NT

I (x)b d� +
∫

�t

NT
I (x)t d� (33)

When the orthogonal condition∫
�
B̃T
IDBJ (x) d�=

∫
�
B̃T
IDB̃J d� (34)

is satisfied [4], from Equation (32) we have

Ktwo-field
I J =

∫
�
B̃T
IDB̃J d� (35)

and the mixed model is variationally consistent, and the mixed variational principle is the assumed
strain method by Simo and Hughes [3]:

�U (u, ẽ) =
∫

�
�ẽTDẽ d� −

∫
�

�uTb d� −
∫

�t

�uTt d�= 0 (36)

This is a generalized Galerkin weak form.
The SFEM uses the generalized Galerkin weak form given in Equation (36), but with the

following two key assumptions:

(1) The domain � is divided into a number of SCs.
(2) The stiffness matrix is defined as Equation (20), regardless whether or not the orthogonal

conditions (34) are satisfied.

Due to these two assumptions, the SFEM may or may not be ‘variationally consistent’ based
on the definition of Equation (34).

Theorem 1
When linear shape functions are used, no matter how many smoothed cells �C are used in �, the
SFEM and FEM are equivalent, KSFEM

I J =KFEM
I J , and variationally consistent.
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Proof
For linear shape functions, we have BI (x) = ∇SNI (x)=BI where the components of BI are
constants. If we divide the domain � into SCs such as �= �1 ∪ �2 ∪ · · · ∪�SC and �1 ∩ �2 ∩ · · ·
∩ �SC =∅, and use Equation (26) to calculate the smoothed strain matrix, we obtain

B̃C I =
∫

�C

BI

AC
d�=BI

∫
�C

1

AC
d�=BI (37)

which gives the simple fact that the smoothed gradient matrix B̃C I over C th cell is also the constant
gradient matrix BI .

From Equations (20) and (37), the stiffness matrix of the element is calculated

KSFEM
I J =

SC∑
C=1

∫
�C

B̃T
C IDB̃C J d�=

SC∑
C=1

∫
�C

BT
IDBJ d�

=BT
IDBJ

SC∑
C=1

∫
�C

d�=BT
IDBJ

∫
�
d�=

∫
�
BT
IDBJ d�

=KFEM
I J (38)

Because the solution of FEM is variationally consistent, the solution of SFEM in this case is
also variationally consistent. �

Therefore, for 1D-problem and 2D-problem using triangle elements, if linear shape functions
are adopted such that ∇SNI (x)= const, the solutions of SFEM and FEM are identical irrespective
of the number of smoothed cells �C used in �. For the bilinear quadrilateral element, ∇SNI (x) is
a linear function of co-ordinates (not constant), hence B̃I 
=BI (x) and KSFEM

I J 
=KFEM
I J . Hence, the

solution of SFEM will be different from that of FEM. We will study the properties of the solution
of the single-cell bilinear quadrilateral smoothed finite element in next section.

4. THE PROPERTIES OF THE SINGLE-CELL BILINEAR QUADRILATERAL
SMOOTHED FINITE ELEMENT

Theorem 2
If only one single-strain smoothing cell (SC= 1) is used individually for each element in the
problem domain of a solid, the SFEM is variationally consistent.

Proof
In this case, �C =�. From Equation (32), using constant matrices B̃I and D, and A= ∫

� d� being
the area of the domain �, one obtains∫

�
B̃T
IDBJ (x) d� = B̃T

ID
∫

�
BJ (x) d�= B̃T

IDA
∫

�

BJ (x)
A

d�= B̃T
IDAB̃J

=
∫

�
B̃T
IDB̃J d� (39)
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which satisfies the orthogonal condition (34), and hence the SFEM is ‘variationally consistent’ by
the definition of Equation (34). �

Lemma 3
If only one single-strain smoothing cell (SC= 1) is used individually for each element in the
problem domain of a solid, the solution of SFEM has the same properties with that of FEM using
reduced integration (one Gauss point).

Proof
As shown in Equation (27), the smoothed strain matrix B̃I of SFEM is the average value of the
standard strain matrix BI (x) over the smoothing domain �, the real physical domain. While for
FEM using reduced integration, BI (x) is calculated at the centre of the isoparametric element,
� = � = 0. So BI (� = 0, � = 0) in FEM is also considered to be the average value of BI (x) over
the isoparametric element. Therefore, it is clear that

∫
� B̃T

IDB̃J d� in SFEM has the same mean-

ing with
∫ 1
−1

∫ 1
−1 B

T
IDBJJ d� d� in FEM using reduced integration. The only difference is that

BI (�= 0, � = 0) in FEM is the average value of BI (x) over the isoparametric element and B̃I in
SFEM is the average value of BI (x) over the real physical element. So in the case the elements
are parallelograms, the results of SFEM and FEM will be identical.

Hence, the solution of SFEM has the same properties with that of FEM using reduced integration.
The element stiffness matrix will contain spurious zeros energy modes, and the global stiffness
matrix after imposing essential boundary conditions can be singular depending on the setting of
the problem [13, 14]. �

5. VARIATIONAL CONSISTENCY OF QUADRILATERAL SFEM ELEMENTS

In this section, we will examine the variational consistency of quadrilateral SFEM elements using
a number of SCs and calculating matrix B̃I on each SC.

If we divide domain � into a number of quadrilateral SCs �C such that � = �1 ∪�2 ∪ · · · ∪ �SC
and �1 ∩ �2 ∩ · · · ∩�SC =∅, Equation (35) will have the form

KSFEM
SC−I J =

SC∑
C=1

∫
�C

B̃T
C IDB̃C J d� (40)

where

B̃C I =
∫

�C

1

AC
BI (x) d�=

∫
�C

1

AC
∇SNI (x) d�=

∫
�C

1

AC
NI (x)nC (x) d�

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
�C

1

AC
NI (x)nCx (x) d� 0

0
∫

�C

1

AC
NI (x)nCy(x) d�∫

�C

1

AC
NI (x)nCy(x) d�

∫
�C

1

AC
NI (x)nCx (x) d�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(41)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 71:902–930
DOI: 10.1002/nme



912 G. R. LIU ET AL.

where AC = ∫�C
d� is the area of smoothed cell �C , �C is the boundary of smoothed cell �C .

Note that B̃C I depends on the area AC rather than the area A of B̃I .
As proved in Section 4, if SC= 1, the calculation of the stiffness matrix KSFEM

I J in Equa-
tion (35), with B̃I = ∫� 1

A ∇SNI (x) d� being the average value of ∇NI (x) in the domain �,
will lead to a solution of whose properties are similar to that of FEM using reduced
integration.

Theorem 3
If SC→ ∞ and the domain of the cell �C → 0, the stiffness matrix KSFEM

SC−I J in Equation (40) will
approach the stiffness matrix KFEM

I J = ∫� BT
I (x)DBJ (x) d� using ‘full’ (2× 2) Gauss integration.

In this case, the solution of SFEM will approach the standard compatible displacement FEM
model.

Proof

lim
SC→∞ KSFEM

SC−I J = lim
SC→∞

SC∑
C=1

∫
�C

B̃T
C IDB̃C J d�= lim

SC→∞
SC∑
C=1

B̃T
C IDB̃C J AC

= lim
SC→∞

SC∑
C=1

(∫
�C

BI (x)
1

AC
d�

)T

D
(∫

�C

BJ (x)
1

AC
d�

)
· AC

= lim
SC→∞

SC∑
C=1

BT
I (�C )DBJ (�C ) · AC =

∫
�
BT
I (x)DBJ (x) d�

=KFEM
I J

where �C is a point in �C . �

Note that B̃C I and D are constants in the domain of the cell �C . When SC→ ∞ and �C
approaches an infinitesimal area, and because BI (x) is continuous,

∫
�C

BI (x) 1
AC

d�
→BI (�C ). The above proof can be simply explained as, when the number of SC→ ∞, domain �C
will approach an infinitesimal area containing a point �C , the average value of BI (x)= ∇NI (x) over
a domain �C will approach the value at the converged point �C , B̃I = ∫�C

BI (x) 1
AC

d�→BI (�C ).
In other words, smoothing of any continuous function over points returns the function
itself.

Theorem 4
For any finite positive integer of SC larger than 1, the orthogonal condition equation (34) will not
be satisfied, and hence SFEM is not ‘variationally consistent’ based on the definition of Equation
(34), and the elements of the SFEM will not satisfy both equilibrium and compatibility in the
element level.

Proof
Note that the orthogonal condition equation (34) is only satisfied for two cases, SC= 1 and
SC→ ∞. Suppose that the orthogonal condition equation (34) will be satisfied with any finite
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D (0, 1)

C (0, -1)

(1, 1)

(1, -1)(-1, -1)

(-1, 1)

y

x

1 2ΩΩ

Figure 1. Two smoothing cells with equal area.

number of SC larger than 1, then

KSFEM
SC−I J = KSFEM

I J

⇔
SC∑
C=1

∫
�C

B̃T
C IDB̃C J d�=

∫
�
B̃T
IDB̃J d�

⇔
SC∑
C=1

∫
�C

(∫
�C

BI (x)
AC

d�

)T

D
(∫

�C

BJ (x)
AC

d�

)
d�=

SC∑
C=1

∫
�C

B̃T
IDB̃J d�

⇔
SC∑
C=1

∫
�C

(∫
�C

BI (x)
AC

d�

)T

D
(∫

�C

BJ (x)
AC

d�

)
d�

=
SC∑
C=1

∫
�C

(∫
�

BI (x)
A

d�

)T

D
(∫

�

BJ (x)
A

d�

)
d� (42)

Equation (42) holds and is independent of the number of SC and sub-domain �C only when
the following equation is satisfied:∫

�C

BI (x)
AC

d�=
∫

�

BI (x)
A

d� for any C (43)

However, Equation (43) is only correct in the case of BI (x) being constant. This contradicts the
hypothesis of the shape function of the bilinear quadrilateral element that BI (x)= ∇SNI (x) is a
linear function of co-ordinates. Therefore, the first statement of Theorem 4 stands.

To show explicitly that Equation (43) cannot be satisfied when BI (x)= ∇SNI (x) is a linear
function of co-ordinates, we study a rectangular bilinear element that is divided into two equal
SCs �1, �2 such that A1 = A2 = A/2= 2, as shown in Figure 1. Without losing generality, the
bilinear shape function is given by N1(x)= 1

4 (1 − x)(1 − y), and

B1(x)=∇SN1(x)=∇S

(
1

4
(1 − x)(1 − y)

)
= 1

4

⎡
⎢⎣
y − 1 0

0 x − 1

x − 1 y − 1

⎤
⎥⎦
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We then have

∫
�

B1(x)
A

d� = 1

4
· 1
4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ 1

−1

∫ 1

−1
(y − 1) dx dy 0

0
∫ 1

−1

∫ 1

−1
(x − 1) dx dy

∫ 1

−1

∫ 1

−1
(x − 1) dx dy

∫ 1

−1

∫ 1

−1
(y − 1) dx dy

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

16

⎡
⎢⎣

−4 0

0 −4

−4 −4

⎤
⎥⎦=−1

8

⎡
⎢⎣
2 0

0 2

2 2

⎤
⎥⎦ (44)

∫
�1

B1(x)
A1

d� = 1

2
· 1
4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ 0

−1

∫ 1

−1
(y−1) dy dx 0

0
∫ 1

−1

∫ 0

−1
(x−1) dx dy

∫ −1

−1

∫ 0

−1
(x−1) dx dy

∫ 0

−1

∫ 1

−1
(y − 1) dy dx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −1

8

⎡
⎢⎣
2 0

0 3

3 2

⎤
⎥⎦ (45)

∫
�2

B1(x)
A2

d� = 1

2
· 1
4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫ 1

0

∫ 1

−1
(y−1) dy dx 0

0
∫ 1

−1

∫ 1

0
(x−1) dx dy

∫ 1

−1

∫ 1

0
(x−1) dx dy

∫ 1

0

∫ 1

−1
(y−1) dy dx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=−1

8

⎡
⎢⎣
2 0

0 1

1 2

⎤
⎥⎦ (46)

It is clear that ∫
�

B1(x)
A

d� 
=
∫

�1

B1(x)
A1

d� 
=
∫

�2

B1(x)
A2

d�

which implies the invalidation of orthogonal condition of Equation (34) and hence the SFEM is
not ‘variationally consistent’ based on the definition of Equation (34).

We need now to show that the element is neither in equilibrium state nor in compatibility state
at the element level.
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Similar to Equations (45) and (46), which are B̃11 and B̃21, we can calculate B̃1I and B̃2I for
I = 2, 3, 4 with the bilinear shape functions N2(x)= 1

4 (1 + x)(1 − y), N3(x)= 1
4 (1 + x)(1 + y)

and N4(x)= 1
4 (1 − x)(1 + y):

B̃12 =
∫

�1

B2(x)
A1

d�= 1

8

⎡
⎢⎣

2 0

0 −1

−1 2

⎤
⎥⎦ , B̃22 =

∫
�2

B2(x)
A2

d�= 1

8

⎡
⎢⎣

2 0

0 −3

−3 2

⎤
⎥⎦ (47)

B̃13 =
∫

�1

B3(x)
A1

d�= 1

8

⎡
⎢⎣
2 0

0 1

1 2

⎤
⎥⎦ , B̃23 =

∫
�2

B3(x)
A2

d�= 1

8

⎡
⎢⎣
2 0

0 3

3 2

⎤
⎥⎦ (48)

B̃14 =
∫

�1

B4(x)
A1

d�= 1

8

⎡
⎢⎣

−2 0

0 3

3 −2

⎤
⎥⎦ , B̃24 =

∫
�2

B4(x)
A2

d�= 1

8

⎡
⎢⎣

−2 0

0 1

1 −2

⎤
⎥⎦ (49)

From Equations (25), (45)–(49) we obtain the strains in the two smoothed cells (see Figure 1)
as follows:

ẽh2 =
4∑

I=1
B̃1IdI = 1

8

⎡
⎢⎣

−2 0 2 0 2 0 −2 0

0 −3 0 −1 0 1 0 3

−3 −2 −1 2 1 2 3 −2

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

v1

u2

v2

u3

v3

u4
v4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(50)

ẽh2 =
4∑

I=1
B̃2IdI = 1

8

⎡
⎢⎣

−2 0 2 0 2 0 −2 0

0 −1 0 −3 0 3 0 1

−1 −2 −3 2 3 2 1 −2

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

v1

u2

v2

u3

v3

u4

v4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(51)
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From Equations (50), (51), it is easy to see that the strains ẽh1, ẽ
h
2 in the two SCs are

different for any non-trivial nodal displacements (zero or rigid movements). This leads to that
the stresses rh1 =Dẽh1 and rh2 =Dẽh2 are different and hence stress is discontinuous on the cell
interface CD (see Figure 1). Therefore, the quadrilateral bilinear element with two cells does not
satisfy equilibrium on the cell interface. According to Lemma 2, the compatibility within the cells is
also violated. �

Note that the above proof is based on SC= 2, but it can be easily extended to any finite number
of SC larger than 1 by simple induction.

Theorem 4 naturally gives rise to a question: is the SFEM solution reliable when a finite number
of cells are used? The following theorem provides a positive and a very powerful answer.

Theorem 5
Consider an SFEM element that is divided sequentially‡ into n�1 SCs. Let the strain energy of
an element with SC= i cells be

ESFEM
SC=i =

i∑
C=1

∫
�C

ẽT�C
Dẽ�C d�=

i∑
C=1
ẽT�C

Dẽ�C A�C (52)

We then have the following monotonic inequality

ESFEM
SC=1 <ESFEM

SC=2 < · · · <ESFEM
SC=n−1<ESFEM

SC=n <ESFEM
SC=n+1< · · ·<ESFEM

SC→∞ = EFEM (53)

Proof
Suppose that the domain � of the quadrilateral element had already divided into n SCs �n(n�1)
such that �= �1 ∪�2 ∪ · · · ∪ �n and �1 ∩�2 ∩ · · · ∩ �n = ∅. Let ESFEM

SC=n be the strain energy of
the element when SC= n. We now further divide the i th SC �i into two SCs �i1 and �i2 such
that �i = �i1 ∪ �i2 and �i1 ∩ �i2 =∅, which results in a total of SC= n+ 1 SCs. Then, the strain
energy of the element becomes ESFEM

SC=n+1. Let e
h be the strain vector of the corresponding element

of the standard displacement compatible FEM. Then, we have the following relationship for the
smoothed strains:

ẽh�i
= 1

A�i

∫
�i

eh d�= 1

A�i

[
A�i1

∫
�i1

eh

A�i1

d� + A�i2

∫
�i2

eh

A�i2

d�

]

= A�i1

A�i︸ ︷︷ ︸
�1

ẽh�i1
+ A�i2

A�i︸ ︷︷ ︸
�2

ẽh�i2

= �1ẽ
h
�i1

+ �2ẽ
h
�i2

(54)

where ẽh�i
is the smoothed strain of domain �i corresponding to SC= n; ẽh�i1

and ẽh�i2
are the

smoothed strains of domains �i1 and �i2 corresponding to SC= n + 1; A�i is the area of domain

‡The division of SC= n + 1 is performed by dividing any of the cells in the previous division of SC= n.
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�i corresponding to SC= n, A�i1 and A�i2 are the areas of domains �i1 and �i2 corresponding
to SC= n + 1; �1 = A�i1/A�i>0 and �2 = A�i2/A�i>0. Note that, we have the relationship

�1 + �2 = 1 (55)

Considering the difference between ESFEM
SC=n+1 and ESFEM

SC=n , and using Equations (54) and (55),
we obtain

ESFEM
SC=n+1 − ESFEM

SC=n = (ẽh�i1
)TDẽh�i1

A�i1 + (ẽh�i2
)TDẽh�i2

A�i2 − (ẽh�i
)TDẽh�i

A�i

=
(

(ẽh�i1
)TD(ẽh�i1

)
A�i1

A�i

+ (ẽh�i2
)hD(ẽh�i2

)
A�i2

A�i

− (ẽh�i
)hD(ẽh�i

)

)
A�i

= (�1(ẽ
h
�i1

)TDẽh�i1
+�2(ẽ

h
�i2

)TDẽh�i2
−(�1ẽ

h
�i1

+�2ẽ
h
�i2

)TD(�1ẽ
h
�i1

+�2ẽ
h
�i2

))A�i

= ((�1 − �21)(ẽ
h
�i1

)TDẽh�i1
+ (�2 − �22)(ẽ

h
�i2

)TDẽh�i2

− �1�2((ẽ
h
�i1

)TDẽh�i2
+ (ẽh�i2

)TDẽh�i1
))A�i

= (�1(1 − �1)(ẽ
h
�i1

)TDẽh�i1
+ �2(1 − �2)(ẽ

h
�i2

)TDẽh�i2

− �1�2((ẽ
h
�i1

)TDẽh�i2
+ (ẽh�i2

)TDẽh�i1
))A�i

= ((ẽh�i1
)TDẽh�i1

+(ẽh�i2
)TDẽh�i2

−((ẽh�i1
)TDẽh�i2

+(ẽh�i2
)TDẽh�i1

))�1�2A�i

= (ẽh�i1
− ẽh�i2

)TD(ẽh�i1
− ẽh�i2

)�1�2A�i>0 (56)

where we used the SPD property of D matrix.
By combining Equation (56) with Theorem 3, we obtain inequality (53). �

The monotonic inequality (53) is a very powerful and useful statement that resulted from
the application of smoothing operations to functions in a positive definite quadratic functional.
Theorem 5 also means that with the same displacement uh , the strain energy of the element with
SC= n+1 cells is larger than that of the element with SC= n cells. Or in other words, the stiffness
matrix of the element with SC= n + 1 cells is stiffer than that of the element with SC= n cells
which gives the following corollary.

Corollary 1
Let KSFEM

SC=i be the stiffness matrix of the element with SC= i cells, we then have

KSFEM
SC=1 ≺KSFEM

SC=2≺ · · · ≺KSFEM
SC=n−1 ≺KSFEM

SC=n ≺KSFEM
SC=n+1≺ · · · ≺KSFEM

SC→∞ =KFEM (57)

where symbol ≺ means that the stiffness matrix is softer.

Corollary 1 can be explained intuitionally as follows: when the number of SC increases, the
stiffness matrix KSFEM

SC−I J in Equation (40) will become stiffer. The solution will transform gradually
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monotonously from the solution of SFEM (SC= 1) to that of the compatible displacement FEM
model (SC→ ∞).

Based on Theorem 5 and Corollary 1, we have naturally the following corollary.

Corollary 2
For the bilinear quadrilateral elements, let the relative displacement error between the exact solution
ui and the numerical solution uSCi of SFEM be

eSCd =
∑ndof

i=1 (ui − uSCi )∑ndof
i=1 |ui |

(58)

where ndof is the total number of degrees of freedom (DOFs) in the problem, SC (SC�1) is the
number of smoothed cells in the quadrilateral element, then we have

eSC=1
d >eSC=2

d > · · · >eSC−1
d >eSCd >eSC+1

d > · · ·>eSC→∞
d = eFEMd (59)

where eFEMd is the relatice displacement error between the exact solution ui and the numerical
solution uFEMi of FEM.

Theorem 5 states that even when SFEM is not ‘variationally consistent’ by the definition
of Equation (34), it produces perfect results that are energy consistent and can have power-
ful bound properties given in Equations (53), (57) and (59). This can be further explained as
follows.

When multiple SCs are used in an element, we observe a unique ‘complementary’ situation: the
equilibrium is ensured in each cell because of the equilibrator, but the compatibility is destroyed in
the cell. On the cell interfaces, however, the equilibrium (stress continuity) is not guaranteed, but
the displacement continuity is ensured due to the use of the same shape functions on the common
interfaces of the cells. It is this unique complementary satisfaction of equilibrium or compatibility
conditions in different parts of the element domain and cell interfaces that ensures no energy loss in
any of the violation of equilibrium or compatibility conditions, the principle of virtual work is still
satisfied, and hence allows the SFEM to produce a solution of some kind of ‘combined’ form of
energy principles. We therefore state that the SFEM is energy consistent. It is this complementary
theory that well explains the essence of the SFEM.

6. NUMERICAL RESULTS

In this section, some numerical examples will be analysed using SFEM. However, we will focus
on the conformation of the properties of SFEM from our theoretical studies.

6.1. Cantilever beam

A cantilever beam with length L and height D is studied as a benchmark problem here, which is
subjected to a parabolic traction at the free end as shown in Figure 2. The beam is assumed to
have a unit thickness so that plane stress condition is valid. The analytical solution is available

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 71:902–930
DOI: 10.1002/nme



THEORETICAL ASPECTS OF THE SMOOTHED FINITE ELEMENT METHOD 919

Figure 2. Cantilever beam.

and can be found in a textbook by Timoshenko and Goodier [15].

ux = Py

6E I

[
(6L − 3x)x + (2 + �)

(
y2 − D2

4

)]

uy = − P

6E I

[
3�y2(L − x) + (4 + 5�)

D2x

4
+ (3L − x)x2

] (60)

where the moment of inertia I for a beam with rectangular cross section and unit thickness is
given by I = D3/12.

The stresses corresponding to the displacement equation (60) are

�xx (x, y) = P(L − x)y

I

�yy(x, y) = 0

	xy(x, y) = − P

2I

(
D2

4
− y2

) (61)

The related parameters are taken as E = 3.0× 107 kPa, � = 0.3, D = 12 m, L = 48 m and
P = 1000 N.
Two types of discretization are used (as shown in Figure 3), one with regular elements and the

other with irregular interior nodes whose co-ordinates are generated in the following fashion:

x ′ = x + �x · rc · �ir

y′ = y + �y · rc · �ir
(62)

where �x and �y are initial regular element sizes in x- and y-direction, respectively. rc is a
computer-generated random number between −1.0 and 1.0 and �ir is a prescribed irregularity
factor whose value is chosen between 0.0 and 0.5. The bigger the value of �ir, the more irregular
the shape of generated elements.
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(a)

(b)

Figure 3. Domain discretization of a beam using 4-node elements: (a) regular elements; and
(b) extremely distorted elements.

In order to study the convergence rate of the present method, two norms are used here, i.e.
displacement norm and energy norm. The displacement norm is given by

ed =
∑ndof

i=1 |ui − uhi |∑ndof
i=1 |ui |

(63)

where ui is the exact solution and uhi is the numerical solution. The following definition is also
used:

esign = sign

(
ndof∑
i=1

(|uhi | − |ui |)
)

(64)

to consider the direction from which side the numerical displacements converge to the exact
solution. If esign = 1, the displacement norm of the numerical solutions will converge to exact
solution from upper, on the contrary, if esign = −1 it will converge to exact solution from lower.

The energy norm is defined by

ee = 1

2LD

[∫
�
(eh − e)TD(eh − e)

]1/2
(65)

In the computations, the nodes on the left boundary are constrained using the exact displacements
obtained from Equation (60) and the loading on the right boundary uses the distributed parabolic
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y

x

y

x(a) (b) (c)

(d) (e) (f)

Figure 4. Division of element into the smoothing cells (SC): (a) SC= 1; (b) SC= 2; (c) SC= 3;
(d) SC= 4; (e) SC= 8; and (f) SC= 16.

Table I. Tip displacements (× 10−3) of the cantilever beam using different regular elements.

SC Mesh 16× 4 Mesh 32× 8 Mesh 64× 16 Mesh 128× 32

1 9.4542 9.0319 8.9326 8.9081
2 9.2915 8.9948 8.9235 8.9059
3 9.0574 8.9389 8.9097 8.9024
4 8.8355 8.8837 8.8959 8.8990
8 8.7978 8.8741 8.8935 8.8984

16 8.6920 8.8469 8.8866 8.8967
FEM (GP= 4) 8.6453 8.8347 8.8836 8.8959

Note: Analytical solution= 8.900× 10−3.

shear stresses in Equation (61). The beam is analysed using different number of elements and
smoothing cells, SC= 1, 2, 3, 4, 8 and 16, as shown in Figure 4.

Table I presents the displacement of the middle tip node and Figure 5 shows the relative error
in displacement v between SFEM and analytical solution (at y = 0, mesh 32× 8) of the cantilever
using regular elements. From the results in Table I and Figure 5, it is seen that the results of
SFEM (SC= 1) and FEM using reduced integration are identical. This is because the elements are
rectangular due to regular mesh. It is also seen that when the number of SC of an element increases
from 1 to 16, the displacement will change gradually from overestimated to underestimated and
approach the result of FEM using 4 Gauss points for full integration. It is observed that an optimal
value SC= 4 gives the best results as compared to the exact ones. From this point, we can draw
the following remark.

Remark 1
In the case that the solution of SFEM (SC= 1) is overestimated to the exact solution, there exists
one optimal value SC>1 (in this example, SC= 4) giving the best results as compared to the exact
ones.
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Figure 5. Comparison of the relative error in displacement v between SFEM and analytical solution for
the cantilever beam. The monotonic behaviour of the SFEM solution in displacement is clearly shown.

Table II. Displacement error norm of the cantilever beam using different element sizes (regular mesh).

SFEM SFEM SFEM SFEM SFEM SFEM FEM
Mesh �h (SC= 1) (SC= 2) (SC= 3) (SC= 4) (SC= 8) (SC= 16) (GP= 4)

16× 4 3.0 6.11E−02 4.19E−02 1.66E−02 (−)7.44E−03 (−)1.15E−02 (−)2.29E−02 (−)2.79E−02
32× 8 1.5 1.45E−02 1.02E−02 4.10E−03 (−)1.89E−03 (−)2.93E−03 (−)5.88E−03 (−)7.20E−03
64× 16 0.75 3.58E−03 2.52E−03 1.02E−03 (−)4.73E−04 (−)7.35E−04 (−)1.48E−03 (−)1.82E−03
128× 64 0.375 8.93E−04 6.30E−04 2.56E−04 (−)1.19E−04 (−)1.84E−04 (−)3.71E−04 (−)4.55E−04

Note: sign (−) shows that the solution is smaller than the exact solution; GP= 4 for FEM quadrilateral element
is the minimum number for full integration.

The displacement and energy error norms of SFEM are compared with those of 4-node bilinear
finite elements in Tables II and III. The convergence rates are also demonstrated in Figure 6(a)
and (b). From these results, it is seen that both error norm and convergence rate of SFEM
in displacement and energy will approach those of FEM when the number of SC increases.
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Table III. Energy error norm of the cantilever beam using different element sizes (regular mesh).

SFEM SFEM SFEM SFEM SFEM SFEM FEM
Mesh �h (SC= 1) (SC= 2) (SC= 3) (SC= 4) (SC= 8) (SC= 16) (GP= 4)

16× 4 3.0 1.68E−04 3.81E−04 3.80E−04 3.97E−04 4.32E−04 4.41E−04 4.55E−04
32× 8 1.5 4.13E−05 1.78E−04 1.88E−04 2.00E−04 2.18E−04 2.23E−04 2.30E−04
64× 16 0.75 1.03E−05 8.75E−05 9.37E−05 1.00E−04 1.09E−04 1.12E−04 1.16E−04
128× 64 0.375 2.59E−06 4.36E−05 4.68E−05 5.01E−05 5.46E−05 5.60E−05 5.78E−05

The results also show that convergence rates in displacement of both methods are roughly equivalent
and approximate 2, but the convergence rate of SFEM is slightly larger than that of FEM. The
error in energy norm for the SFEM is always smaller than that of FEM, as shown in Figure 6(b).
Convergence rate in energy of SFEM when SC= 1 is approximately 2, while those of other SCs
are approximately 1. It is also shown that the convergence rate for SFEM of SC>1 is larger than
that of FEM.

To investigate the effect of the shape of quadrilateral element, we perform the same analysis using
severely distorted elements created using irregular nodes to compute the error in both displacement
and energy. The degree of nodal irregularity �ir is chosen between 0.0 (regular mesh) and 0.4. From
Table IV and Figure 7, it is noted that when the mesh becomes more distorted, the displacement
error norm of all SCs (except SC= 1) will move closer toward the side of compatible model of
FEM. Hence, the displacement error of SC= 2, 3 at some �ir will become even smaller than those
of �ir = 0 (regular mesh) as they approach and pass across zero error (the exact solution). With the
increase of �ir, the displacement errors of SC= 4, 8, 16 and FEM increase. This property shows
that all cases of SCs (except SC= 1) have some similarities, for example, the nearly compatible
property of displacement.

Table V and Figure 8 show that when the mesh becomes more distorted, the energy error
norm of all cases of SCs (SFEM) and FEM increases regularly. These results suggest that if
the concerned value of the solution is stress or strain (energy), we should use a regular or less
distorted mesh and the optimal value of SC is 4. If the displacement is of concern, we can use
a more distorted mesh and the optimal value of SC may be 3. It seems for this problem that an
element with non-symmetric SCs, e.g. SC= 3, is the best for a severely distorted mesh, while
an element with symmetric SCs, e.g. SC= 4, is the best for a regular or less distorted mesh.
Note that when the shape of element is severely distorted (�ir>0.2), FEM may fail to work
due to the negative determinant of Jacobian matrix, but the SFEM still works well even when
�ir>0.4.

We note that this numerical example confirms the bound properties of SFEM.

6.2. Infinite plate with a circular hole

Figure 9 represents a plate with a central circular hole, radius a = 1m, subjected to a unidirectional
tensile load of 1.0 N/m at infinity in the x-direction and Figure 10 gives the discretization of the
domain using 4-node elements. Due to its symmetric, only the upper right quadrant of the plate
is modelled. Plane strain condition is considered and E = 1.0× 103 N/m2, �= 0.3. Symmetric
conditions are imposed on the left and bottom edges, and the inner boundary of the hole is traction
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SFEM(SC=1;2.07)

SFEM(SC=2;2.04)

4-node FEM(1.95)

SFEM(SC=4;1.97)

SFEM(SC=8;1.97)

SFEM(SC=3;2.01)

SFEM(SC=16;1.96)

4-node FEM (0.982)

SFEM (SC=16; 0.984)

SFEM (SC=8; 0.988)

SFEM (SC=2; 1.096)

SFEM (SC=3; 1.017)

SFEM (SC=4; 0.991)

SFEM (SC=1; 2.026)

(b)

(a)

Figure 6. Comparison of convergence rate between SFEM and FEM: (a) displacement norm; and (b) energy
norm; the monotonic behaviour of the SFEM solution in energy norm is clearly shown.
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Table IV. Displacement error norm of the cantilever beam using irregular elements (mesh 32× 8).

SFEM SFEM SFEM SFEM SFEM SFEM FEM
�ir (SC= 1) (SC= 2) (SC= 3) (SC= 4) (SC= 8) (SC= 16) (GP= 4)

0.0 (Regular) 1.45E−02 1.02E−02 4.10E−03 (−)1.89E−03 (−)2.93E−03 (−)5.88E−03 (−)7.20E−03
0.1 1.47E−02 1.01E−02 3.86E−03 (−)2.29E−03 (−)3.33E−03 (−)6.31E−03 (−)7.63E−03
0.2 1.89E−02 9.46E−03 3.02E−03 (−)3.29E−03 (−)4.43E−03 (−)7.46E−03 (−)8.81E−03
0.3 1.98E−02 8.23E−03 1.38E−03 (−)5.51E−03 (−)6.76E−03 (−)9.88E−03 Fail
0.4 2.53E−02 7.46E−03 (−)2.06E−03 (−)8.14E−03 (−)9.49E−03 (−)1.28E−02 Fail
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Figure 7. Displacement error norm of the cantilever beam using irregular elements (mesh 32× 8).

Table V. Energy error norm of the cantilever beam using irregular elements (mesh 32× 8).

SFEM SFEM SFEM SFEM SFEM SFEM FEM
�ir (SC= 1) (SC= 2) (SC= 3) (SC= 4) (SC= 8) (SC= 16) (GP= 4)

0.0
(Regular) 4.13E−05 1.78E−04 1.88E−04 2.00E−04 2.18E−04 2.23E−04 2.30E−04
0.1 5.76E−05 1.86E−04 1.94E−04 2.06E−04 2.24E−04 2.29E−04 2.37E−04
0.2 8.73E−05 2.04E−04 2.12E−04 2.23E−04 2.42E−04 2.48E−04 2.56E−04
0.3 1.28E−04 2.37E−04 2.43E−04 2.55E−04 2.76E−04 2.83E−04 Fail
0.4 1.59E−04 2.77E−04 2.80E−04 2.92E−04 3.15E−04 3.39E−04 Fail
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Figure 8. Energy error norm of the cantilever beam using irregular elements (mesh 32× 8).
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Figure 9. Infinite plate with a circular hole subjected to unidirectional tension.
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Figure 10. Domain discretization of the infinite plate with a circular hole using 4-node element.

free. The exact solution for the stress [15] is

�11 = 1 − a2

r2

[
3

2
cos 2
 + cos 4


]
+ 3a4

2r4
cos 4


�22 = −a2

r2

[
1

2
cos 2
 − cos 4


]
− 3a4

2r4
cos 4


	12 = −a2

r2

[
1

2
sin 2
 + sin 4


]
+ 3a4

2r4
sin 4


(66)

where (r, 
) are the polar co-ordinates and 
 is measured counterclockwise from the positive x-axis.
Traction boundary conditions are imposed on the right (x = 5) and top (y = 5) edges based on the
exact solution equation (66). The displacement components corresponding to the stresses are

u1 = a

8�

[
r

a
(� + 1) cos 
 + 2

a

r
((1 + �) cos 
 + cos 3
) − 2

a3

r3
cos 3


]

u2 = a

8�

[
r

a
(� − 1) sin 
 + 2

a

r
((1 − �) sin 
 + sin 3
) − 2

a3

r3
sin 3


] (67)

where �= E/(2(1+ �)), � is defined in terms of Poisson ratio by � = 3–4� for plane strain cases.
The domain is discretized using regular quadrilateral elements divided into different SCs,

SC= 1, 2, 4, 8 and 16, as shown in Figure 4. The convergence rates in displacement and
energy are demonstrated in Figure 11(a) and (b). Similar to the cantilever beam problem, it
is observed that both error norms of SFEM will approach those of FEM when the number of SC
increases. The errors in displacement and energy of SFEM are always smaller than those of FEM,
and they generally converge in a comparable rate as compared with FEM except SC= 1, for which
case the convergence rate is much higher.
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Figure 11. Comparison of convergence rate between SFEM and FEM:
(a) displacement norm; and (b) energy norm.
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The bound property of SFEM is again strictly observed from this example. Note that from
Figure 11(a), the displacement norm of SFEM (SC= 1) is the smallest and this norm increases
monotonously with the increase of SC. This shows that the solution for all SCs is always under-
estimated to the exact solution. Hence, we can draw the following remark.

Remark 2
In the case that the solution of SFEM (SC= 1) is underestimated to the exact solution, we suggest
to use SC= 2 to obtain the solution. This solution will be stable (without zeros energy modes)
and have the smallest displacement and energy norms.

7. CONCLUSION

In this work, the theoretical bases for SFEM are examined and established in a systematical manner.
Through the analytical formulations and numerical examples, some conclusions can be drawn as
follows:

1. The Galerkin weak form for SFEM can be established based on Hu–Washizu variational
principle or on the mixed variational principle of the assumed strain method, proposed by
Simo and Hughes [3].

2. For elastic problems, 1D linear element and 2D linear triangle element of SFEM are identical
to their counterparts of FEM. For the quadrilateral element, when the number of SCs of an
element of SFEM approaches infinity or equals 1, the solution will be variationally consistent.
For any other finite number of SC larger than 1, the solution will not be variationally
consistent.

3. For the quadrilateral elements, when the number of SC equals 1, the solution of SFEM has the
same properties with those of FEM using reduced integration. The element stiffness matrix
will contain spurious zeros energy modes, and the global stiffness matrix after imposing
essential boundary conditions can be singular depending on the setting of the problem. When
the number of SC approaches infinity, the solution of SFEM will approach the solution of
standard displacement compatible FEM model. When the number of SC is a finite number
larger than 1, the solutions of SFEM will change monotonously from the solution of SFEM
(SC= 1) to that of FEM using full integration.

4. In the case that the solution of SFEM (SC= 1) is overestimated to the exact solution, there
exists one optimal value SC>1 (normally SC= 4) which gives the best results as compared
to the exact ones. In the case that the solution of SFEM (SC= 1) is underestimated to the
exact solution, it is suggested that we should use SC= 2 to obtain the solution. This solution
will be stable (without zeros energy modes) and have the smallest displacement and energy
norms. In practical calculation, we can use SC= 4 for all problems, the results will be always
better than that of standard FEM, and in many cases (not all) this solution is closest to the
exact solution.

5. The convergence rates for SFEM in both displacement and energy norms are higher than
that for FEM. The error in energy norm is generally smaller than that of FEM. Both error
norm and convergence rate of SFEM of both displacement and energy will approach those
of FEM when the number of SC increases.

6. SFEM works well even for extremely distorted elements.
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Though only 2D elastic problems are considered in this work, there is no technical difficulty
in extending the applications of SFEM to other relatively complicated problems, such as 3D
problems, geometric and elasto-plastic non-linear problems, higher order elements, etc. Although,
more intensive studies need to be conducted in the future, our study so far has convinced that
SFEM codes can be developed with minor modifications from the standard existing FEM codes,
and they can be widely applied in solving many practical problems for more accurate solutions.
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