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Abstract

This paper presents a least-square radial point collocation method (LS-RPCM) that is formulated based on the strong formulation and

the local approximation using radial basis functions (RBFs). Aiming to solve the instability problem observed in the conventional

RPCM using local nodes, a simple and yet effective procedure that uses the well-known least-square technique in a carefully designed

manner has been proposed to restore the stability. Since stable solution can now be obtained, the LS-RPCM is then extended for

adaptive analysis. Attractive features of the meshfree strong-form method that facilitate the implementation of adaptive analysis are

demonstrated via a number of examples in this work. A robust residual based error estimator and a simple refinement procedure using

Delaunay diagram are adopted in our adaptive scheme. Stable and accurate results are obtained in all the numerical examples.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Following the great success of the finite element method,
a new class of computational methods, meshfree methods,
has been drawing much attention from researchers in the
recent decades. Unlike the finite element method, the
meshfree method is ‘‘free’’ from the mesh in shape function
constructions, and is becoming a promising computational
method.

The earliest work of the meshfree method can be traced
back to 1970s; Lucy and Monaghan introduced smoothed
particle hydrodynamics (SPH) method to solve astronomic
problems [1–3]. Since then many meshfree methods have
been proposed, intensive reviews and thorough studies on
the development of the meshfree methods are abundantly
available in the literature [3–6]. According to the formula-
tion procedures, meshfree methods can be categorized into
e front matter r 2007 Elsevier Ltd. All rights reserved.
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three major groups [6]. The first group of meshfree
methods is formulated based on the strong formulation
known as the meshfree strong-form method. Typical
meshfree strong-form method may include smoothed
particle hydrodynamics (SPH) method [1–3], diffusion
approximation method (DAM) [52], finite point method
(FPM) [8,51], hp-meshless cloud method [9], general finite
different method (GFDM) [10–14,55], radial point colloca-
tion method (RPCM) [6,15], etc. The second group of
meshfree method is formulated based on the weak
formulation, namely the meshfree weak-form method.
Majority of the meshfree methods belong to this group,
for instance, meshless local Petrov–Galerkin (MLPG)
method [16], element-free Galerkin (EFG) method [17],
reproducing kernel particle method (RKPM) [18], local
radial point interpolation method (LRPIM) [19,20], point
interpolation method [21,22], radial point interpolation
method [23,53], etc. Some of the meshfree weak-form
methods are however not regarded as ‘‘true’’ meshfree
method as background mesh is still necessary in their
formulation. The last group of meshfree method is
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formulated based on both strong and weak formulations,
or known as the meshfree weak–strong (MWS) forms
method [25,26]. In the MWS formulation, the strong-form
formulation (collocation) is applied to all the internal
nodes and nodes on the Dirichlet boundaries, and the local
weak formulation is only applied on the Neumann
boundary.

Among these three groups of meshfree methods, the
weak-form method is the most well-established method due
to the use of the variational principle that provides good
stability. In contrast, the development of the meshfree
strong-form method is rather sluggish. Available literature
for the meshfree strong-form method using local nodes is
very limited. Nevertheless, the meshfree strong-form
method possesses many good features. It is regarded as a
truly meshfree method as it does not even require a
background mesh, because no integration is needed in the
formulation. Such distinct feature facilitates the implemen-
tation of the refinement or coarsening scheme in the
adaptive analysis as node can be easily inserted or removed
without worrying too much about the nodal connectivity.
It is obvious that the strong formulation is much simple,
straightforward and easy to implement. Apparently, the
meshfree strong-form method is a better candidate for
adaptive analysis compared to the meshfree weak-form
method. Some research works of meshfree strong-form
method for adaptive analysis have been reported in the
literature [6,27–29].

Currently, most reliable strong-form methods are still
very much relying on the structure grids and restricted only
for regular domain. Finite difference method (FDM) is
considered as the most classical, reliable and earliest
strong-form method [30]. However, while dealing with
more geometrically complex and practical problems, the
FDM that relies on the structure grids has encountered
great difficulty. A strong-form meshfree method that is
formulated without relying on the structure grid is there-
fore very attractive. Although method like GFDM [12–16]
claims that it can be used for irregular domain and
unstructured grids, a proper stencil (nodal selection) is
somehow still needed for function approximation. The
cumbersome procedure of nodal selection constrained the
strong-form method from being used in the adaptive
process as nodal distribution during the adaptation can be
highly irregular and hence results in difficulties in forming
the ‘‘proper’’ stencils.

Recently, radial basis functions (RBFs) have been
broadly used in the meshfree method for constructing the
shape functions. As RBFs are well known for their
excellence performance in scattered data fitting, the
strong-form method that is based on RBFs can work very
well with irregular grids. Kansa is the first to adopt RBFs
in collocation method for solving partial differential
equations (PDEs) [31] using all the nodes in the problem
domain for ‘‘one-piece’’ interpolation. The coefficient
matrix constructed by the conventional RBFs scheme
using ‘‘global’’ nodes for one-piece interpolation is a full
matrix, and results in poor conditioning and low accuracy
in the solution [32]. Several techniques include domain
decomposition [32], RBFs with compact support [33],
adding fictitious nodes [34] and modified Kansa method
[35] with double use of the boundary nodes have been
introduced to improve the conditioning of the coefficient
matrix and the solution accuracy.
To overcome the ill-conditioning of the full coefficient

matrix, a novel idea that can construct a banded coefficient
matrix is the key to develop a practical meshfree strong-
form method that is competitive to the weak-form
methods. Such new RBFs scheme that is based on local
nodes and piecewise interpolation known as the RPCM has
been therefore suggested [6,17,28,36,37]. Other recent
works have also been presented using local nodes and
piecewise interpolation in the function approximation
[38,39]. The work presented in this paper will be based
on the RPCM, where RBFs approximation is used to
construct the shape functions using only local nodes and
piecewise interpolation.
The instability problem is another crucial issue that

limits the application of strong-form method that uses local
nodes, especially in the adaptive analyses. Without an
effective stabilization measure, it is impossible to use such a
meshfree strong-form method for adaptive analyses.
Researchers have also introduced several stabilization
schemes [8,28,29]; however, stabilization factor has to be
determined or special treatment is needed in those works.
The idea of using least-square technique to solve strong-
form collocation method is a natural choice. Zhang et al.
has proposed to use a least-square formulation [40] with
some auxiliary points in the domain; however, their
formulation is based on global nodes and one-piece
interpolation.
The author believes that a comprehensive and insightful

study on the root of the instability problem is very
important to develop effective techniques to overcome
the stability problem in the strong-form meshfree methods
which use local nodes for piecewise function approxima-
tion. From a large number of numerical investigations, we
observed the strong-form solution oscillates heavily on the
boundary of the problem domain when the RPIM shape
functions created using local nodes. We believe that such
oscillation is caused by the ‘‘strong’’ requirement for the
approximated field variable to satisfy governing equations
and boundary conditions ‘‘exactly’’ at all the nodes. Based
on our observation and understanding on the oscillation
phenomenon, a novel and simple least-square RPCM (LS-
RPCM) is proposed based on the strong formulation. In
this formulation procedure, additional collocation points
are only inserted on the boundary. A common technique,
least-square technique, is then adopted to provide certain
‘‘relaxation’’ effect upon the strong formulation. The
oscillation phenomenon will be illustrated in detail in the
following sections and in the numerical examples.
Our intensive numerical study will also demonstrate that

a stable and accurate solution can be obtained from the
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Table 1

Typical generalized radial basis functions [4,5], where ri ¼ jjx� xijj is the

Euclidian norm in the vector space

Type Expression Dimensionless

Shape

Parameter

Multi-quadrics (MQ) Riðx; yÞ ¼ ðr2i þ ðacdcÞ
2
Þ
q ac, q

Gaussian (EXP) Riðx; yÞ ¼ expð�cr2i Þ C

Thin plate spline (TPS) Riðx; yÞ ¼ r
Z
i Z

Logarithmic Riðx; yÞ ¼ r
Z
i log ri Z

The shape parameters are arbitrary real numbers.
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present procedure. Furthermore, the LS-RPCM is also
successfully implemented for adaptive analyses. Compared
with other existing strong-form methods, nodal selection in
the LS-RPCM is much more flexible. The present
formulation of the LS-RPCM remains simple, straightfor-
ward and no integration is needed. The great stability and
advantages of the LS-RPCM are well demonstrated in the
numerical examples of adaptive analysis.

In our adaptive analysis, a residual based error estimator
is devised and used in this work. By evaluating the residual
of the governing equations in the domain, the error
estimator can effectively identify the critical regions to be
refined during adaptation. In general, the refinement
schemes can be classified into three major categories,
which are h-refinement, p-refinement and r-refinement
schemes. The details of the procedure for different
refinement schemes can be found in Ref. [41]. In this work,
h-refinement is adopted our adaptive scheme. Unlike the
conventional h-refinement scheme in which mesh is
enriched, additional nodes are inserted into the domain
based on the error estimator in our h-refinement procedure.
The Delaunay diagram is introduced to locate the position
of the additional nodes to be inserted into the domain. As
long as meshfree strong-form method is concerned,
additional nodes can be inserted into the domain without
worry of the nodal connectivity.

2. Function approximation

In the present formulation, RBF augmented with
polynomial function is used to approximate the field
functions and its derivatives. The RBFs have been widely
used for scattered data fitting in the mathematic commu-
nity [42,43]. In early 1990s, Kansa used RBFs for solving
PDEs [31]. Since then RBFs are well discussed and many
research works have been followed up [44–46]. In Kansa’s
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works, as all nodes in the problem domain are used for the
function approximation, the full coefficient matrix is
usually with large condition number [32].

Recently, a function approximation based on ‘‘local’’
radial point interpolation piecewisely has been well
discussed in both strong [17,36,37] and weak [19,20,23,24]
formulations. In these works, the ‘‘local’’ radial point
interpolation is used: only vicinity nodes are involved for
the local function approximation in a piecewise manner.
With such a local radial point interpolation, full coefficient
matrix can be effectively avoided. There are many RBFs
available in the literature, typical generalized RBFs with
arbitrary real shape parameters [5,6] listed in Table 1 are
found in great performance.
Consider an unknown field function u(x) that can be

approximated in the vicinity of an interest point x in the
problem domain by the local radial point interpolation in
the following form as

uhðxÞ ¼
Xn

i¼1

airiðjjx� xijjÞ þ
Xm

j¼1

bjpj, (1)

where n is the total number of the supporting nodes in the
local domain, m is the number of the monomials in the
polynomial function, ri(|| � ||) is the radial basis function
and pj is the monomial in the polynomial function for
augmentation. ai and bj are the coefficients of the radial
basis function and the monomial of the polynomial
function.
By enforcing the interpolation passing through the nodal

values at the local nodes, the following expression can be
obtained,
or in concise form

U ¼ ½R P �
a

b

� �
, (2)

where U is the vector of unknown nodal values, a and b are
the vector of coefficients of the radial basis functions and
the monomials of the polynomial function, respectively.
With the orthogonal condition [32,42],

PTa ¼ 0, (3)
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Fig. 1. Nodal selection for constructing shape function in one-dimen-

sional space.
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a unique vector of coefficients can be obtained as

a

b

� �
¼

R P

PT 0

� ��1
U

0

� �
¼ G�1

U

0

� �
. (4)

The unknown approximated field function u(x) at interest
point x can then be expressed as

uhðxÞ ¼ ½f1ðxÞ f2ðxÞ � � � fnðxÞ �U ¼ UðxÞU, (5)

where f(x) is the shape function called RPIM shape
function. The derivatives of the field function can be easily
obtained by differentiating the shape functions. For
example, the first derivative of the field function with
respect to k can be expressed as

uh
;kðxÞ ¼ U;kðxÞU. (6)

The details of constructing the RPIM shape function and
its other properties can be found in, e.g. Refs. [5,6].

Note that Eq. (5) gives a piecewise approximation of the
field function u in the vicinity of the point of interest x. The
point x can be any point in the problem domain: at nodes
or otherwise. Where x changes, the local nodes will be
changed accordingly. Using this piecewise approximation
of Eq. (5), a simple collocation procedure can be easily
used to create a set of algebraic equations that can be
solved using standard solver, if the equations well behaved.
In usual situation, these equations obtained by simple
collocations do not behave well, and hence technique
present in this work is needed to establish a set of equations
that are stable and well behaved.

In this paper, multiquadrics (MQ) and completed second-
order polynomial, m ¼ 6, are used in the function approxima-
tion. In the MQ-RBF, two dimensionless shape parameters
that have great influence to the accuracy are needed to be
determined. However, by augmenting the polynomial function
with the RBFs, the effects of dimensionless shape parameters
to the RBFs can be reduced [24]. In this work, we adopt the
recommended values reported by Liu and co-workers [5,6,24]
for the shape parameters used for MQ are adopted from the:
ac=3.0 and q=1.03.

Note that the nodal selection for the radial point
interpolation should be forming at least a ‘‘layer’’ of nodes
surround the interpolation point x. For instance, in one-
dimensional case, the supporting nodes must at least
include one node on both sides of the interpolation point
as shown in Fig. 1. To ensure G in Eq. (4) is invertible, the
number of supporting nodes has to be at least equal to the
number of the monomials used in the polynomial function,
nXm. In our work, the number of supporting nodes is
about two to three times of the number of the monomials,

n ¼ 223m. (7)

3. Radial point collocation method

Consider a problem in a domain O is governed by the
following PDEs:

LðuÞ ¼ f in O, (8)
with Neumann boundary condition,

BðuÞ ¼ g on Gt, (9)

and Dirichlet boundary condition,

u ¼ ū on Gu, (10)

where L( ), B( ) are the differential operators and u is the
field variable.
In the conventional collocation method, the above

governing equation and boundary conditions are simply
collocated at their corresponding field nodes, respectively,
as follows:

LðuiÞ ¼ f i in O, (11)

with Neumann boundary condition,

BðuiÞ ¼ gi on Gt, (12)

and Dirichlet boundary condition,

ui ¼ ūi on Gu, (13)

where subscript ‘‘i’’ denotes the collocation point.
The discretized system equations can then be assembled

and expressed in the following matrix form as

KU ¼ F, (14)

where K denotes the coefficient matrix, F denotes the force
vector and U is the vector of unknown nodal field values.
Note that the coefficient matrix of the collocation method
is generally unsymmetric. The vector of unknown nodal
values can be easily solved as

U ¼ K�1F, (15)

if K is not singular and well conditioned.

4. Least-square procedure

Studies (e.g. [6]) have found that K given in Eq. (15)
obtained by simple collocation is not usually not well
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conditioned, and such a strong-form method can provide
unstable solution. Therefore, it is difficult to use them in an
adaptive analysis. In this work, we propose a simple and
yet effective procedure, least-square procedure, to obtain
stable solutions.

Through our observation, Neumann boundary condi-
tion is the cause of the instability. We found that the
conventional RPCM performs well for solving one-dimen-
sional problem and Dirichlet problem. However, the
solution of conventional RPCM becomes unstable while
dealing with Neumann boundary condition. Oscillation
phenomenon is observed on the boundary. It could be due
to the ‘‘strong’’ requirement of satisfaction of the
Neumann boundary condition in the strong formulation.
To provide a kind of ‘‘relaxation’’ effect, least-square
approach is a natural choice to be adopted.

In the present formulation, additional collocation points
are added on the boundary and allocated in between the
boundary nodes as shown in Fig. 2. The Neumann and
Dirichlet boundary conditions in Eqs. (12) and (13) can be
collocated at the additional collocation points on the
boundary, respectively. The additional algebraic equations
can be assembled and expressed in the matrix form as
follows:

KN 0

KD0

" #
U ¼

FN 0

FD0

" #
or KaU ¼ Fa, (16)

where KN 0U ¼ FN 0 and KD0U ¼ FD0are the additional sets
of algebraic equations for additional collocation points on
the Neumann and Dirichlet boundaries, respectively.
Augmented the additional algebraic equations to the
original system equations, one can obtain an ‘‘over-posed’’
problem [47]:

K

Ka

" #
U ¼

F

Fa

" #
or eKU ¼ eF ¼ 0. (17)

As the number of algebraic equations is more than the
number of unknown variable U, a common least-square
technique using QR-algorithm is applied to solve for the
Fig. 2. Field nodes and additional collocation points in a problem domain

and boundaries.
vector of unknowns U by minimizing the residual in
Eq. (17). Before the set of equations is solved, to have
equal weight for each algebraic equation, each equation
should be normalized by the value of the largest entry
in the corresponding row of the coefficient matrix eK.
The normalized algebraic equations can be expressed in the
following matrix form,bKU ¼ bF, (18)

where bK denotes the normalized coefficient matrix and bF
denotes the normalized force vector. In the conventional
RPCM, although the boundary conditions are fully satisfied
at the boundary nodes, stable solution cannot be ensured.
From our study [25,28,29], the cause of instability could be
due to the imposition of Neumann boundary condition. We
believe that by introducing more collocation points along
the boundary, the least-square procedure can provide
certain ‘‘relaxation’’ upon the strong formulation and hence
a more stable solution can be obtained. The key point of the
least-square procedure is that having additional collocation
points along the boundary is enough to stabilize the
solution. Introducing additional collocation points in the
internal domain may help but it is not necessary. This is in
line with the principle of the MWS method [25,26].

5. Adaptive scheme

As the RPCM is a truly meshfree method, it possesses
attractive features to facilitate an easier implementation for
adaptive scheme. Without the constraint of the nodal
connectivity, additional nodes can be inserted during
refinement process easily. Cumbersome remeshing process
is also avoided.
A good error estimator plays a very important role in the

adaptive analysis. In our adaptive scheme, a robust error
Fig. 3. Residual evaluated at the middle of the Delaunay cell.
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estimator based on residual of the governing equation is
adopted. The residual based error estimator provides a
good measurement for the quality of the local approxima-
tion and the global accuracy of the solution. The details of
the error estimator and refinement procedures are given as
follows.
u
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Fig. 6. The solution of field function u

Fig. 7. The error of the field function u and
5.1. Error estimator

In our adaptive scheme, the problem domain is first
represented using Delaunay diagram. The error estimator
is computed by evaluating the residual of the governing
equations at the centre of the Delaunay cells as shown in
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Fig. 3. The local error estimator is defined as

Zj ¼

Z
Oj

jjLu� f jjL2
dO � 1

3
AjjjLuj � f jjjL2

, (19)

where Aj is the area of the jth Delaunay cell and the
jjLuj � f jjjL2

is the L2 norm of the residual of the governing
equation evaluated at the centre of the corresponding cell.
Fig. 9. (a) Dimensions of the triangular bar and
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With above definition of the local error estimator, the
estimated global residual norm can be easily obtained as

Zg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
Lu� f
�� ��
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where nc is the total number of Delaunay cells.
(b) four sets of regular nodal distribution.
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5.2. Refinement and stopping criteria

In our adaptive scheme, the refinement criteria is defined as

ZjXklZm, (21)

where kl is the local refinement coefficient and Zm is the
maximum local error estimator in the entire domain,

Zm ¼ maxðZjÞ. (22)

The estimated global residual norm defined in Eq. (20) is
used as a stopping indicator of the adaptive process. The
stopping criteria is defined as

ZgpkgZmg, (23)

where kg is the global residual tolerance and Zmg is the
maximum global error estimator value throughout the
adaptive process. Once the criteria is met, the adaptive process
will be terminated.
Fig. 11. (a) Dimensions of elliptic bar and (b) the
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Fig. 10. Convergent rate of the solutions obtained by RPCM and LS-
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5.3. Refinement procedure

As the RPCM is a truly meshfree method, the refinement
process is very simple and straightforward. Nodal can be
conveniently inserted into the domain without worry of the
nodal connectivity. The costly remeshing process is also
not required to carry out as well. In our adaptive strategy,
additional node will be inserted in the centre of the
Delaunay cell if the refinement criteria (Eq. (21)) is met.

6. Numerical examples

In this paper, the norm for true error is defined as
follows:

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðsexact � sapprÞ

2P
ðsexactÞ

2

s
, (24)

where sexact is the exact solution and sappr numerical
solution.

6.1. Example 1

In the first example, a one-dimensional Poisson problem
with solution of steep gradient is studied. This example
shows the excellent performance of the RPCM in adaptive
model with 511 irregularly distributed nodes.

Table 2

Accuracies of the RPCM and LS-RPCM for torsion problem

No. of nodes h (average

spacing)

Error norm of

RPCM

Error norm of

LS-RPCM

Regular nodal distribution (triangular cross section)

66 0.2807 0.0104 0.0098

231 0.1409 0.0014 0.0013

496 0.0940 4.1776e�4 3.8730e�4

861 0.0706 1.7879e�4 1.6556e�4

Irregular nodal distribution (elliptic cross section)

511 0.1160 3.5847e�15 5.2227e�15
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analysis. The Poisson problem governed by the following
ordinary differential equation (ODE),

d2u

dx2
¼
�2a2ðax� 1Þ

½1þ ðax� 1Þ2�2
; x 2 O : ½�1; 1�, (25)

where a is a constant. Dirichlet boundary condition is
imposed at left end,

u ¼ tan�1ðax� 1Þ at x ¼ �1; (26)
Fig. 13. Model of plate with (a) 435 nodes and (b) wi
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Fig. 14. (a) Displacement in y-direction and (b) normal

Fig. 12. Model of a plate subjected to a unit traction in the horizontal

direction.
and Neumann boundary condition is imposed at right end,

du

dx
¼

a

1þ ðax� 1Þ2
at x ¼ 1. (27)

The exact solution for the above ODE is known as

u ¼ tan�1ðax� 1Þ. (28)

From the exact solution (Eq. (28)), we know that the
gradient of the field function u depends on the value of the
constant a. The exact solution of the field function u and its
first derivative for different a are plotted in Figs. 4 and 5,
respectively. In this example, an extremely large value of
a=104 is deliberately selected for the purpose of examining
the robustness of the RPCM and the residual based error
estimator for the Poisson problem with solution of steep
gradient in one-dimensional space.
An extremely low global residual tolerance is set as

kg=5� 10�7 and local refinement coefficient is preset as
kl=0.1. The entire analysis takes 39 steps to complete and
the nodal distributions at 1st, 10th, 25th and final steps are
plotted in Fig. 6.
th additional 18 nodes to the model of 435 nodes.
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stress sxx along the left edge for Models A and B.
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The results of the adaptive analysis using the RPCM are
given in Fig. 7. The estimated global residual norm and the
error of the solution have been tremendously reduced
through our adaptive scheme. One can observe that the
adaptive RPCM is able to capture and refine the high
gradient region. Majority of the nodes have been inserted
Fig. 16. Nodal distributions at 1st, 2nd, 4th and final step in the adaptive

analysis using LS-RPCM.
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Fig. 15. Normal stress syy along the top edge: the result obtained using

RPCM is oscillating on the boundary.
at the high gradient region as shown in Figs. 6 and 8. The
numerical solutions for the field function and its gradient
are greatly improved by our adaptive approach. The
residual based error estimator is also shown robust in this
example. Stable and accurate results are obtained by our
adaptive scheme.

6.2. Example 2

In the second example, a two-dimensional torsion
problem is studied. We consider a uniform bar that is
twisted by couples applied at the ends [48]. The equilibrium
equation of the torsion problem can be expressed as

q2j
qx2
þ

q2j
qy2
¼ �2Gy, (29)
Fig. 18. Error norm of the displacements at each step.

Fig. 17. Estimated global residual norm at each step in the adaptive

analysis using LS-RPCM.
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Fig. 20. Quarter of the model of a cylinder subjected to internal pressure.
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where j is the stress function, G is the shear modulus of the
bar and y is the twisted angle. The relationship of the
stresses and stress function is given as

txz ¼
qj
qy
; tyz ¼ �

qj
qx

. (30)

Torsion problem is a Dirichlet problem, the boundary
condition is known as

qj
qy

qy

qs
þ

qj
qx

qx

qs
¼

qj
qs
¼ 0. (31)

The above equation shows the stress function j must be
constant along the boundary of the cross section, and j is
arbitrarily chosen as zero for this problem.

A uniform triangular cross section bar is studied in this
example and the twist angle is given as y ¼ 1. The
dimensions of the problem are given in Fig. 9. The
analytical solution of this problem is given as

j ¼ �Gy
1

2
ðx2 þ y2Þ �

1

2a
ðx3 � 3xy2Þ �

2

27
a2

� �
. (32)

To study the approximated convergent rate of the error
norm for j of the LS-RPCM and the RPCM, four sets of
regular nodal distribution are used (see Fig. 9). It is shown
in Fig. 10 that the convergent rate of the error norm for j
of the RPCM and the LS-RPCM is about the same,
R ¼ 2.95. The accuracy of the LS-RPCM is slight higher
than the RPCM.

The same torsion problem is also analysed using an
elliptic bar. To examine the numerical performance of the
RPCM and the LS-RPCM for the scattered nodes, the bar
is modelled by 511 nodes irregularly distributed in the
problem domain as shown in Fig. 11. The analytical
solution of the problem is now known as a second-order
Fig. 19. (a) Displacements in y-direction and (b) normal
polynomial

j ¼ �
a2b2

a2 þ b2
Gy

x2

a2
þ

y2

b2
� 1

� 	
. (33)

As the RPIM shape function (Eq. (5)) is able to reproduce
the second-order polynomial function [5,6], the accuracy
for both the RPCM and the LS-RPCM is up to the
machine accuracy as listed in Table 2.
The purpose of this example is not to emphasize on the

reproductivity of the RPIM shape function for the
polynomial function. Rather, we would like to point out
that the RPCM based on local nodes can achieve excellent
accuracy even for scattering nodes, if the Neumann
boundary condition is not involved. In this example with
only Dirichlet boundary condition being involved, the
RPCM is able to obtain good result without any
stabilization measure. Note that, the LS-RPCM can also
stresses sxx along the left edge at first and final step.
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Fig. 22. Estimated global residual norm at each step.
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achieve very good accuracy for the Dirichlet problem as
well.

6.3. Example 3

In this example, a benchmark plane strain solid
mechanics problem is studied to reveal the instability
problem encountered by the RPCM. An infinite plate with
circular hole is subjected to a unit traction P in the
horizontal direction. Due to the symmetry, only quarter of
the problem is modelled as shown in Fig. 12. Symmetric
boundary condition is imposed along the left and bottom
edges. The geometry and material properties are given as:
a ¼ 0.2, b ¼ 2.0, Young’s modules, E ¼ 1� 103 and
Poisson’s ratio, u ¼ 0.3. The governing equations of
elastostatics problem are well known as

sij;j þ bi ¼ 0 in O. (34)

Dirichlet boundary conditions are given as

ui ¼ ūi on Gu, (35)

and Neumann boundary conditions are given as

sijnj ¼ ti on Gt. (36)

The analytical solution of this problem can be found in
Ref. [48].

To demonstrate the instability problem of the RPCM,
two similar sets of nodal distribution are used (see Fig. 13).
Model A is made up by 435 nodes. Eighteen nodes are
added into Model A to form Model B. Although there are
Fig. 21. Nodal distribution
only 18 nodes that are different between Model A and
Model B, the results obtained by the RPCM based on these
two models are tremendously different. The numerical
solutions of the displacements and the stresses along the
left edge are plotted in Fig. 14. It is clear that the solution
computed by the RPCM is unstable. Both the solutions of
displacements and stresses for Model A and Model B are
significantly different. Compared to the RPCM, the
s at each adaptive step.
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solution obtained by the LS-RPCM is very stable and
much more accurate.

In the RPCM formulation procedure, the boundary
conditions are fully satisfied on the boundary point.
Rather, in our present least-square procedure, the bound-
ary conditions are satisfied in the least-square sense. In this
example, syy ¼ 0 is the Neumann boundary condition
along the top edge. From Fig. 15, one can observe that the
boundary condition along the top edge (syy ¼ 0) is fully
satisfied by the RPCM at the boundary nodes only. We
notice that the value of syy is frustrating other than the
nodes (still along the top edge), oscillation is observed.
Except at the boundary nodes, the interpolation value of
syy can vary significantly from zero (the exact condition)
along the top edge as shown in Fig. 15. In the present
Fig. 23. Error norm of the displacements at each step.
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Fig. 24. Error norm of the stresses at each step.
formulation, the least-square procedure provides a kind of
‘‘relaxation’’ effect upon the strong formulation against the
‘‘strong’’ requirement of the boundary conditions. Good
Fig. 26. (a) Displacements in y-direction and (b) normal stresses sxx along

the left edge at first and final step.

Fig. 27. Cantilever beam subjected to a parabolic shear stress at the right

end.
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the left edge at first and final step.
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approximated solutions can be obtained by the LS-RPCM
as shown in Fig. 15.

As the stability is restored, the LS-RPCM is incorpo-
rated then with the residual based error estimator to
performance adaptive analysis subsequently. The adaptive
analysis started with 121 nodes irregularly distributed in
the problem domain. Sixteen nodes are used for construct-
ing the shape functions. The local refinement coefficient is
predefined as kl ¼ 0.1 and the global residual tolerance is
set as kg ¼ 0.1. The adaptive analysis ended at 5th step
with 905 nodes irregularly distributed in the problem
domain as shown in Fig. 16.
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The estimated global residual norm at each adaptive
step is plotted in Fig. 17. One can notice that the esti-
mated global residual norm is gradually reduced at
each adaptive step. Excellent stability of the LS-RPCM
is demonstrated (Fig. 18). The error norms of the
displacements in x- and y-directions are also plotted in
Fig. 18. For reference purpose, the displacements
and stresses along the bottom edge are plotted at initial
and final steps as shown in Fig. 19. It is evidently clear
that the accuracy of both displacements and stresses have
been greatly improved through our effective adaptive
scheme.
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Fig. 34. Nodal distributions at 1st

Fig. 33. A reservoir fully filled with water.
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6.4. Example 4

The forth example is a thick wall cylinder subject to an
internal pressure. The material properties and geometries
are given as: internal radius a ¼ 1, external radius b ¼ 5,
Young’s modulus E ¼ 1� 107, Poisson’s ratio v ¼ 0.3 and
internal pressure P ¼ 1MPa. The analytical solution of
this problem is well known and can be found in Ref. [49].
As this problem is symmetric, only quarter of the

problem is modelled as shown in Fig. 20. Symmetric
, 3rd, 6th, 9th, 12th, 16th step.
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Fig. 35. Estimated global residual norm at each adaptive step.
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boundary condition is imposed along the left and bottom
edges. In this example, only 15 nodes are used for
constructing the shape functions. The local refinement
coefficient is predefined as kl ¼ 0.1 and the global residual
tolerance is set as kg ¼ 0.025. The adaptive analysis is
started with 121 regularly distributed nodes in the domain
and stop at the 6th step with 1930 nodes irregularly
distributed in domain, as shown in Fig. 21. The estimated
global residual norm at each step is plotted in Fig. 22. The
error norm of the displacements has been greatly reduced
from 19.08% for both displacements in x-direction and
y-direction to 0.27% and 0.09%, respectively as shown in
Fig. 23. The error norm of the stresses has also been
reduced dramatically as shown in Fig. 24.
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Fig. 36. Displacement in y-direction at 1st, 6th, 8th and final along the

vertical edge.
The displacements and stresses along the left edge are
plotted and compared with analytical solution as shown in
Figs. 25 and 26. These plots show the adaptive scheme has
effectively refined the critical domain based on error
estimator and hence the solutions are improved. The
numerical solutions of the displacements and stresses at the
final steps are in very good agreement with the analytical
solutions.

6.5. Example 5

To examine the computational efficiency of the LS-
RPCM, a bench mark elastostatics plane stress problem is
studied. A cantilever beam with unit thickness is subjected
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to a parabolic shear stress at the right end as shown in
Fig. 27. The material properties and geometrics are given
as: Young’s modulus E ¼ 3� 107, Poisson’s ratio u ¼ 0.3,
length of cantilever L ¼ 48.0m and the height H ¼ 12.0m.
The loading is known as txy ¼ �ðP=2IÞðH2=4� y2Þ, where
I is moment of inertial of the cross section of cantilever and
P ¼ 1000N. Analytical solution can be found in Ref. [48].

In this example, four sets of regular nodal distribution:
5� 11, 9� 21, 17� 41 and 33� 81, are used. Sixteen
Fig. 40. Contour plot of

Fig. 41. Contour plot of
supporting nodes are used for constructing the shape
functions. The computational time required for each model
is plotted in Fig. 28 and compared with the RPCM and the
FEM. Convergent rate of the error norms of displace-
ments, stresses and energy norm are also compared as
shown in Figs. 29–31. Their efficiencies in term of the
energy norm are also plotted in Fig. 32.
From Fig. 28, one can observe that the computational

time required for the LS-RPCM is higher that the RPCM
the normal stress sxx.

the normal stress syy.
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and the FEM. It is due to the use of the least-square
procedure in the LS-RPCM. The convergent rates of the
error norm of displacements and energy norm are
approximately about 2.29 and 2.06, respectively. The
accuracy of the LS-RPCM for the displacements is
comparable with FEM as shown in Fig. 29. In term of
the accuracy of the stresses and the convergent rate of the
energy norm, the LS-RPCM performs better than FEM as
shown in Figs. 30 and 31. The efficiency rate in term of
energy norm of the LS-RPCM is also the best among these
three methods. Although the RPCM seems performing well
in the regular nodal distribution in Figs. 29–31, the
instability issue is still fatal shortcoming that prohibits
the RPCM from being used in adaptive analysis.

6.6. Example 6

In this example, the wall of a reservoir fully filled with water
is investigated. The geometry of the wall is irregular as given in
Fig. 33. The material properties of the wall are given as
Young’s Modulus E ¼ 1� 107 and Poisson’s ratio u ¼ 0.3.
The bottom of the wall is fixed and the curvy edge of the wall
is subjected to a hydrostatic pressure P ¼ �9800(H�y)MPa.

As analytical solution is not available in this case, a very
fine mesh (59,400 linear triangular elements) FEM solution
will be considered as our references solution. The problem
is initially modelled by 121 nodes as shown in Fig. 34. The
local refinement coefficient is predefined as kl ¼ 0.1 and the
global residual tolerance is set as kg ¼ 0.025. The adaptive
analysis ended at 16th step with 2625 nodes irregularly
distributed in the domain.

The final nodal distribution in Fig. 34 has shown that the
residual based error estimator has effectively identified the
Fig. 42. Contour plot of
high stress regions. The estimated global residual norm is
gradually reduced through out the adaptive process as
shown in Fig. 35. From Figs. 36–39, the numerical
solutions of the displacements have been improved greatly
through the adaptive analysis. The contour plots for
stresses are also given in Figs. 40–42, and the final
solutions of stresses are in very well agreement with the
reference solutions. The stresses along the curvy edge are
also plotted and compared with references solutions in
Fig. 43, and it shows the numerical solutions of the stresses
very tally with reference solutions as well.
the shear stress txy.
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7. Discussions

As shown in the first two examples, the RPCM has
exhibited its excellent numerical performance for one-
dimensional problem and the Dirichlet problem. The first
numerical example has shown the RPCM a stable method
for problem with solution of high gradient in one-
dimensional space. No instability takes place during the
adaptation. Results have also shown that the residual
based error estimator is robust and able to identify the high
gradient region. Example 2 shows the RPCM can also be
used for solving Dirichlet problem. Torsion problem with
irregular geometry and irregular nodal distribution can be
solved with good accuracy.

However, while the Neumann boundary condition is
involved, instability is a fatal shortcoming of the RPCM as
clearly illustrated in Example 3. In Examples 3, 4 and 6, the
LS-RPCM has been successfully implemented for the
adaptive analysis. Stable and accurate results can be
obtained. The computational efficiency of the LS-RPCM
is also studied and compared with the FEM and the
RPCM in the Example 5. Having additional collocation
points on the boundary have been proven effectively
restores the stability in these examples. We have also tried
to introduce more collocation points in the problem
domain, and we found that it may help but it is not
necessary.

8. Concluding remarks

In this paper, a least-square radial point collocation
method (LS-RPCM) is proposed. The notorious instability
problem encountered by the conventional RPCM is
resolved by the proposed least-square procedure. By
having additional collocation point on the boundary, it
provides a ‘‘relaxation’’ effect that reduces the ‘‘strong’’
requirement for the boundary condition in the strong
formulation. Number of numerical examples has shown
that stable solutions can be obtained through the simple
and yet effective least-square procedure. As stable solution
can be achieved, the LS-RPCM has well demonstrated
its advantages in adaptive analysis. The residual based
error estimator is also shown robust and efficient.
Refinement procedure using Delaunay diagram is demon-
strated as a simple and yet a versatile procedure to insert
additional nodes during the refinement process. Numerical
examples have shown the LS-RPCM not only obtained
stable and accurate result but also successfully implemented
for adaptive analysis which conventional RPCM cannot
perform.
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[8] Onãte E, Perazzo F, Miquel J. A finite point method for elasticity

problems. Comput Struct 2001;79:2153–63.

[9] Liszka TJ, Duarte C, Tworzydlo WW. hp-Meshless cloud method.

Comput Methods Appl Mech Eng 1996;139:263–88.

[10] Cheng M, Liu GR. A novel finite point method for flow simulation.

Int J Numer Methods Fluids 2002;39(12):1161–78.

[11] Liszka T, Orkisz J. Finite difference methods of arbitrary irregular

meshes in non-linear problems of applied mechanics. In: Proceedings

of 4th international conference on structural mechanics in reactor

technology, San Francisco, USA, 1977.

[12] Liszka T, Orkisz J. Finite difference method at arbitrary irregular

grids and its application in applied mechanics. Comput Struct

1979;11:88–95.

[13] Girault V. Theory of a finite difference method on irregular networks.

SIAM J Numer Anal 1974;11(2):260–82.

[14] Pavlin V, Perrone N. Finite difference energy techniques for arbitrary

meshes applied to linear plate problems. Int J Numer Methods Eng

1979;14(5):647–64.

[15] Liu X, Liu GR, Tai K, Lam KY. Radial basis interpolation

collocation method for the solution of partial differential equations.

Comput Math Appl 2005;50:1425–42.

[16] Atluri SN, Zhu T. A new meshless local Petrov–Galerkin (MLPG)

approach in computational mechanics. Comput Mech 1998;22:

117–27.

[17] Belytschko T, Lu YY, Gu L. Element-free Galerkin method. Int J

Numer Methods Eng 1994;37:229–56.

[18] Liu WK, Jun S. Multiple-scale reproducing kernel particle methods

for large deformation problems. Int J Numer Methods Eng

1998;41:1339–62.

[19] Liu GR, Gu YT. A local radial point interpolation method (LRPIM)

for free vibration analyses of 2-D solids. J Sound Vibr 2001;246:

29–46.

[20] Liu GR, Zhang GY, Gu YT Wang YY. A meshfree radial point

interpolation method (RPIM) for three-dimensional solids. Comput

Mech 2005;36:421–30.

[21] Liu GR, Gu YT. A point interpolation method for two-dimensional

solids. Int J Numer Methods Eng 2001;50:937–51.

[22] Liu GR, Zhang GY, Dai KY. A linearly conforming point

interpolation method (LC-PIM) for 2D solid mechanics problems.

Int J Comput Methods 2007;2:645–65.

[23] Li Y, Liu GR, Luan MT, Dai KK, Zhong ZH, Li GY, et al. Contact

analysis for solids based on linearly conforming RPIM. Comput

Mech 2007;39(4):537–54.

[24] Wang JG, Liu GR. On the optimal shape parameters of radial basis

functions. Comput Methods Appl Mech Eng 2002;191:21–6.

[25] Liu GR, Gu YT. A meshfree method: meshfree weak–strong form

method for 2-D solids. Comput Mech 2003;33:2–14.

[26] Liu GR, Wu YL, Ding H. Meshfree weak–strong (MWS) form

method and its application to incompressible flow problems. Int J

Numer Methods Fluids 2004;46:1025–47.

[27] Kovacevic I, Sarler B. Solution of a phase-field model for dissolution

of primary particles in binary aluminium alloys by an r-adaptive

meshfree method. Mater Sci Eng, A 2005;413/414:423–8.

[28] Liu GR, Kee BBT, Lu C. A stabilized least-squares radial point

collocation method (LS-RPCM) for adaptive analysis. Comput

Methods Appl Mech Eng 2006;195:4843–61.

[29] Liu GR, Kee BBT. An adaptive meshfree method based on regu-

larized least-squares formulation. In: 13th international conference



ARTICLE IN PRESS
B.B.T. Kee et al. / Engineering Analysis with Boundary Elements 32 (2008) 440–460460
on computational and experimental engineering and sciences

(ICCES), Chennai, India, 2005.

[30] Courant R, Friedrichs KO, Lewy H. Über die partiellen differenzen-
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