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The paper presents an alpha finite element method (aFEM) for computing nearly exact solution in energy
norm for mechanics problems using meshes that can be generated automatically for arbitrarily compli-
cated domains. Three-node triangular (aFEM-T3) and four-node tetrahedral (aFEM-T4) elements with a
scale factor a are formulated for two-dimensional (2D) and three-dimensional (3D) problems, respec-
tively. The essential idea of the method is the use of a scale factor a 2 [0,1] to obtain a combined model
of the standard fully compatible model of the FEM and a quasi-equilibrium model of the node-based
smoothed FEM (N-SFEM). This novel combination of the FEM and N-SFEM makes the best use of the
upper bound property of the N-SFEM and the lower bound property of the standard FEM. Using meshes
with the same aspect ratio, a unified approach has been proposed to obtain a nearly exact solution in
strain energy for linear problems. The proposed elements are also applied to improve the accuracy of
the solution of nonlinear problems of large deformation. Numerical results for 2D (using aFEM-T3) and
3D (using aFEM-T4) problems confirm that the present method gives the much more accurate solution
comparing to both the standard FEM and the N-SFEM with the same number of degrees of freedom
and similar computational efforts for both linear and nonlinear problems.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

For many decades, the constant finite elements such as the
three-node triangle and four-node tetrahedron are popular and
widely used in practical. The reason is that these elements can
be easily formulated and implemented very effectively in the finite
element programs using piecewise linear approximation. Further-
more, most FEM (finite element method) codes for adaptive analy-
ses are based on triangular and tetrahedral elements, due to the
simple fact that triangular and tetrahedral meshes can be automat-
ically generated.

However, these elements possess significant shortcomings,
such as poor accuracy in stress solution, the overly stiff behavior
and volumetric locking for plane strain problems in the nearly
incompressible cases. In order to overcome these disadvantages,
some new finite elements were proposed. For the triangular ele-
ments, Allman [1,2] introduced rotational degrees of freedom at
the element nodes to achieve an improvement for the overly stiff
behavior. Elements with rotational degrees of freedom were also
considered in Ref. [3,4]. Piltner and Taylor [5] combined the rota-
ll rights reserved.

Thoi).
tional degrees of freedom and enhanced strain modes to give a tri-
angular element which can achieve a higher convergence in energy
and deal with the nearly incompressible plane strain problems.
However, using more degrees of freedom at the nodes limits the
practical application of those methods. For both triangular and tet-
rahedral elements, Dohrmann et al. [6] presented a weighted least-
squares approach in which a linear displacement field is fit to an
element’s nodal displacements. The method is claimed to be com-
putationally efficient and avoids the volumetric locking problems.
However, more nodes are required on the element boundary to de-
fine the linear displacement field. Dohrmann et al. [7] also pro-
posed a nodal integration finite element method (NI-FEM) in
which each element is associated with a single node and the linear
interpolation functions of the original mesh are used. The method
avoids the volumetric locking problems and performs better com-
paring to standard triangular and tetrahedral elements in terms of
stress solution for static problems.

In the other front of development, a conforming nodal integra-
tion technique has been proposed by Chen et al. [8] to stabilize
the solutions in the context of the meshfree method and then ap-
plied in the natural-element method [9]. Liu et al. have applied this
technique to formulate the linear conforming point interpolation
method (LC-PIM) [10], the linearly conforming radial point
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interpolation method (LC-RPIM) [11]. Applying the same idea to
the FEM, an element-based smoothed finite element method
(SFEM) [12,13,43] and a node-based smoothed finite element
method (N-SFEM) [14] have also been formulated. When only
the linear shape function for interpolation is used, the LC-PIM is
identical to the NI-FEM or N-SFEM using triangular and tetrahedral
elements [14]. Liu et al. [15] have provided an intuitive explanation
and showed numerically that when a reasonably fine mesh is used,
the LC-PIM has an upper bound in the strain energy. The same find-
ing is obtained for LC-RPIM and N-SFEM, meaning that the LC-RPIM
and N-SFEM also have the similar upper bound property.

Obtaining exact solution measured in a norm using a numerical
method is a fascinating idea in the area of computational methods.
So far, the mixed FEM models [16–19] based on the mixed
variational principles focus mainly to improve the accuracy of
the solution. Recently, an alpha finite element method (aFEM)
using four-node quadrilateral elements has been developed for
the purpose of finding the nearly exact solution in strain energy
even for the coarse mesh [20,21]. The aFEM is a novel FEM in which
the gradient of strains is scaled by a factor a 2 [0,1], and the coding
of the aFEM is almost exactly the same as the standard FEM. The
obtained result of strain energy is a continuous function of a be-
tween the solutions of the standard FEM using reduced integration
and that using full Gauss integration. The significance of this for-
mulating is two folds: (1) For overestimation problems, there ex-
ists an a 2 [0,1] at which the solutions of aFEM is nearly exact in
energy norm; (2) For underestimation problems, the aFEM solution
obtained at a = 0 is the closest to the exact solution in energy norm
[20,21]. Based on the function of strain energy curves and the use
of meshes with the same aspect ratio, a general procedure of the
aFEM has been suggested to obtain the exact or best possible solu-
tion for a given problem: an exact-a approach is devised for over-
estimation problems; and a zero-a approach for underestimation
problems. The aFEM has clearly opened a novel window of oppor-
tunity to obtain numerical solutions that are exact in certain
norms. However, the aFEM based on quadrilateral elements cannot
provide exact solution to all problems. Furthermore, the use of
four-node quadrilateral elements in aFEM requires a quadrilateral
mesh that cannot be generated in a full automated manner for
complicated domains.

Making use of the upper bound property of the N-SFEM, the
lower bound property of the standard FEM in the strain energy,
and the importance idea of the aFEM for the four-node quadrilat-
eral elements, we propose a novel alpha finite element method
using three-node triangular (aFEM-T3) elements for 2D problems
and four-node tetrahedral elements (aFEM-T4) for 3D problems.
The essential idea of the method is to introduce a scale factor
a 2 [0,1] to establish a continuous function of strain energy that
contains contributions from both the standard FEM and the
N-SFEM. Our formulation ensures the variational consistence and
the compatibility of the displacement field, and hence guarantees
reproducing linear field exactly. Based on the fact that the standard
FEM of triangular and tetrahedral elements is stable (no spurious
zero energy modes), and so is the N-SFEM as proved by Liu et al.
[14], our aFEM will be always stable. This stability ensures the con-
vergence of the solution. Furthermore, this novel combined formu-
lation of the FEM and N-SFEM makes the best use of the upper
bound property of the N-SFEM and the lower bound property of
the standard FEM. Using meshes with the same aspect ratio, a uni-
fied approach has been proposed to obtain the nearly exact solu-
tion in strain energy for a given linear problem. The proposed
elements are also applied to nonlinear problems of large deforma-
tion. In such cases, the exact solution is usually difficult to obtain,
but the accuracy of the solution can be significantly improved.
Numerical results for 2D (using aFEM-T3) and 3D (using aFEM-
T4) problems confirm that the present method gives the excellent
performance comparing to both the standard FEM and the N-SFEM.
It is very easy to implement and apply to practical problems of
complicated geometry.

Note that the present aFEM-T3 and aFEM-T4 are very much dif-
ferent from the aFEM for quadrilateral elements (or aFEM-Q4)
given in Ref. [20,21] in terms of both formulation procedures and
the approach. First, the aFEM-Q4 is element based and aFEM-T3
(or aFEM-T4) is both element and node based; Second, in the case
of aFEM-Q4, the strain field in the element is linear, which allows
us to scale the gradient of the strain field by introducing a scaling
factor a. In the present aFEM-T3 (or aFEM-T4), the strain field in the
element is constant, and hence it is not possible to scale the gradi-
ent of the strain field. Therefore, a new technique has to be devised
to create a desirable strain field; Third, aFEM-Q4 can only give
nearly exact solution in strain energy for overestimation problems
[20,21], while the present aFEM-T3 (or aFEM-T4) can provide
nearly exact solution in strain energy for all linear problems with-
out any post processing techniques.

The paper is outlined as follows. In Section 2, the idea the aFEM-
T3 and aFEM-T4 is briefly introduced. In Section 3, some theoretical
properties of the aFEM-T3 and aFEM-T4 are presented. Numerical
implementations are described in Section 4 and patch testes are
performed in Section 5. In Section 6, some numerical examples
are examined and discussed to verify the formulations and proper-
ties of the aFEM-T3 and aFEM-T4. Some concluding remarks are
made in the Section 7.

2. The idea of the present aFEM

2.1. Briefing on the finite element method (FEM) [22–26]

The discrete equations of the FEM are generated from the Galer-
kin weak formZ

X
ðrsduÞTDðrsuÞdX�

Z
X

duTbdX�
Z

Ct

duT�tdC ¼ 0; ð1Þ

where b is the vector of external body forces, D is a symmetric po-
sitive definite (SPD) matrix of material constants, �t is the prescribed
traction vector on the natural boundary Ct, u is trial functions, du is
test functions and $su is the symmetric gradient of the displace-
ment field.

The FEM uses the following trial and test functions

uhðxÞ ¼
XNP

I¼1

NIðxÞdI; duhðxÞ ¼
XNP

I¼1

NIðxÞddI; ð2Þ

where NP is the number of the nodal variables of the element, dI is
the nodal displacement vector, and NI(x) is a matrix of shape
functions.

By substituting the approximations, uh and duh, into the weak
form and invoking the arbitrariness of virtual nodal displacements,
Eq. (1) yields the standard discretized algebraic equation system:

KFEMd ¼ f; ð3Þ

where KFEM is the system stiffness matrix, f is the force vector, that
are assembled with entries of

KFEM
IJ ¼

Z
Xe

BT
I DBJ dX; ð4Þ

f I ¼
Z

Xe

NT
I ðxÞbdXþ

Z
Ct

NT
I ðxÞ�tdC: ð5Þ

In Eq. (4), the strain matrix is defined as

BIðxÞ ¼ rsNIðxÞ ð6Þ

that produces compatible strain fields. Using the triangular and
tetrahedral elements with the linear shape functions, the strain
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gradient matrix BI(x) contains only constant entries. Eq. (4) then
becomes

KFEM
IJ ¼ BT

I DBJVe; ð7Þ

where Ve ¼
R

Xe
dX is the area/volume of the element.

2.2. Briefing on node-based smoothed finite element method (N-SFEM)

The N-SFEM works for polygonal elements of arbitrary sides
[14]. Here we brief only the formulations for triangular element
N-SFEM-T3 for 2D problems and the tetrahedral element
N-SFEM-T4 for 3D problems, because they will be used in this
work.

In the N-SFEM-T3 for 2D problems, the domain discretization is
the same as that of the standard FEM using Ne triangular elements,
but the integration required in the weak form (1) is performed
based on the nodes, and strain smoothing technique [8] is used.
In such a nodal integration process, the problem domain X is di-
vided into smoothing cells associated with nodes such that
X ¼ Xð1Þ [ Xð2Þ [ � � � [ XðNnÞ and X(i) \ X(j) = ;, i 6¼ j, in which Nn is
the number of total nodes located in the entire problem domain.
For triangular elements, the cell X(k) associated with the node k
is created by connecting sequentially the mid-edge-points to the
centroids of the surrounding triangular elements of the node k as
shown in Fig. 1. As a result, each triangular element will be divided
into three quadrilaterals of equal area and each quadrilateral is at-
tached with the nearest node. The cell X(k) associated with the
node k is then created by combination of each nearest quadrilateral
of all elements surrounding the node k.

Similarly in the N-SFEM-T4 for 3D problems, each tetrahedral
element will be divided into four sub-domains of equal area and
each sub-domain is attached with the nearest node. Combine each
sub-domain of all elements surrounding the node k forms the cell
X(k) associated with the node k. The formulation of the N-SFEM-T4
is very much the same as the N-SFEM-T3, and hence our discussion
will focus on N-SFEM-T3.

In the N-SFEM [14], the domain integration over the smoothing
cell X(k) for computing the smoothed strain gradient matrix eB be-
comes line integrations along the boundary C(k) of the cell. The gra-
dients are computed directly only using shape functions itself at
some particular points along segments of boundary of the cells
and no explicit analytical form is required. The values of shape
functions at any point in an n-sided polygonal element are defined
in a trivial manner of simple interpolation [14].
node k

Γ

: field node : centroid of triangle : mid-edge point

(k)

(k)

cell

Fig. 1. Triangular elements and smoothing cells associated with the nodes.
In this paper, however, due to the use the standard FEM to-
gether the N-SFEM in the aFEM-T3 and aFEM-T4, the formulation
of N-SFEM will be performed in an alternative way. This change
aims to reuse the stiffness gradient matrix BI of the elements in
the standard FEM to calculate the smoothed stiffness gradient ma-
trix eBIðxkÞ of the cell X(k) in the N-SFEM. In addition, it also makes
the implementation procedure and the programming much easier.
As a result, the coding can be largely same as the standard FEM.

Applying the node-based smoothing operation, the compatible
strains e = $su used in Eq. (1) is used to create a smoothed strain
on the cell X(k) associated with node k:

~ek ¼
Z

XðkÞ
eðxÞUkðxÞdX ¼

Z
XðkÞ
rsuðxÞUkðxÞdX; ð8Þ

where Uk(x) is a given smoothing function that satisfies at least
unity propertyZ

XðkÞ
UkðxÞdX ¼ 1: ð9Þ

Using the following constant smoothing function

UkðxÞ ¼
1=V ðkÞ x 2 XðkÞ;

0 x 62 XðkÞ;

(
ð10Þ

where V(k) is the area/volume of the cell X(k) and is calculated by

V ðkÞ ¼
Z

XðkÞ
dX ¼ 1

3

XNðkÞe

i¼1

V ðiÞe for triangular element; ð11Þ

V ðkÞ ¼
Z

XðkÞ
dX ¼ 1

4

XNðkÞe

i¼1

V ðiÞe for tetrahedral element; ð12Þ

where NðkÞe is the number of elements around the node k and V ðiÞe is
the area/volume of the ith element around the node k.

In the N-SFEM-T3 and N-SFEM-T4, the trial function uh(x) is the
same as in Eq. (2) of the FEM and therefore the force vector f in the
N-SFEM-T3 and N-SFEM-T4 is calculated in the same way as in
the FEM.

Substituting Eq. (2) into Eq. (8), the smoothed strain on the cell
X(k) associated with node k can be written in the following matrix
form of nodal displacements

~ek ¼
X

I2NðkÞn

eBIðxkÞdI; ð13Þ

where NðkÞn is the number of nodes that are directly connected to
node k and eBIðxkÞ, that is termed as the smoothed strain matrix on
the cell X(k), is calculated numerically by an assembly process sim-
ilarly as in the FEM

eBIðxkÞ ¼
1

V ðkÞ
XNðkÞe

i¼1

1
3

V ðiÞe Bi for the triangular elements; ð14Þ

eBIðxkÞ ¼
1

V ðkÞ
XNðkÞe

i¼1

1
4

V ðiÞe Bi for the tetrahedral elements; ð15Þ

where Bi is the strain gradient matrix of the ith element around the
node k.

Due to the use of the triangular or tetrahedral elements with the
linear shape functions, the entries of matrix Bi are constants, and so
are the entries of matrix eBIðxkÞ. The entries in sub-matrices of the
stiffness matrix eK of the system is then assembled by a similar pro-
cess as in the FEM

eKIJ ¼
XNn

k¼1

eKIJðkÞ; ð16Þ

where eKIJðkÞ is the stiffness matrix associated with node k and is cal-
culated by
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Fig. 3. Cell associated with nodes for triangular elements in the aFEM-T3.
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eKIJðkÞ ¼
Z

XðkÞ

eBT
I DeBJ dX ¼ eBT

I DeBJV
ðkÞ: ð17Þ

Note that with this formulation, only the area/volume and the
usual compatible strain matrices Bi of triangular or tetrahedral ele-
ments are needed to calculate the system stiffness matrix for the
N-SFEM. The procedure of dividing each triangular and tetrahedral
element into three or four sub-domains of equal area in the
N-SFEM-T3 and N-SFEM-T4 presented above is only to demon-
strate the process of formulation. Therefore, no explicit formation
of four equal sub-domains of the tetrahedral element in the
N-SFEM-T4 is necessary in the actual implementation and coding.

2.3. An alpha finite element method for triangular elements (aFEM-T3)
for 2D problems

The aFEM-T3 combines both the N-SFEM-T3 and the standard
FEM-T3 by using the scale factor a 2 [0,1]. As presented in the pre-
vious subsection, in the N-SFEM-T3, the area of each triangle is di-
vided into three quadrilaterals of equal area and each quadrilateral
is used to calculate the contribution to the stiffness matrix of the
node attached to the quadrilateral as shown in Fig. 2. In the
aFEM-T3, the area Ve of triangular element is divided into four
parts with a scale factor a as shown in Fig. 2: three quadrilaterals
scaled down by (1 � a2) at three corners with equal area of
1�a2

3 Ve, and the remaining Y-shaped part in the middle of the ele-
ment of area a2Ve. The N-SFEM-T3 is used to calculate for three
quadrilaterals at the three corners, while the FEM-T3 is used to cal-
culate for the Y-shaped area. The entries in sub-matrices of the sys-
tem stiffness matrix KaFEM-T3 will be the assembly from the entries
of those of both the N-SFEM-T3 and the FEM-T3 as follows:

KaFEM-T3
IJ ¼

XNn

k¼1

KN-SFEM-T3
IJðkÞ þ

XNe

l¼1

KFEM
IJðlÞ ; ð18Þ

where Ne is the number of total elements in the entire problem do-
main and

KN-SFEM-T3
IJðkÞ ¼

Z
Xðk;aÞ
ðeBðaÞI ðxkÞÞTDeBðaÞJ ðxkÞdX ð19Þ

KFEM
IJðlÞ ¼

Z
XðaÞe

BT
I DBJ dX ¼ BT

I DBJa
2Ve ð20Þ

in which XðaÞe is the Y-shape area of triangle; X(k,a) is the area asso-
ciated the node k and bounded by the boundary C(k,a) as shown in
Fig. 3. The smoothed strain matrix eBðaÞI ðxkÞ for X(k,a) is calculated by

eBðaÞI ðxkÞ ¼
1

V ðk;aÞ
XNðkÞe

i¼1

1
3
ð1� a2ÞV ðiÞe Bi ¼

1

V ðkÞ
XNðkÞe

i¼1

1
3

V ðiÞe Bi ¼ eBIðxkÞ;

ð21Þ

which implies that we can use the matrix eBIðxkÞ for area X(k)

bounded by the boundary C(k) instead the matrix eBðaÞI ðxkÞ for area
N-SFEM

N-SFEM N-SFEM

N-SFEM-T3FEM-T3

FEM
+

centroid

mid
po

Fig. 2. An aFEM-T3 element: combination of the triangular elements of FEM and N-SFEM
the center.
X(k,a) in the calculation. Note that to obtain Eq. (21), the following
relation between the area V(k,a) of the area X(k,a) and the area V(k)

of the area X(k) is used:

V ðk;aÞ ¼
Z

Xðk;aÞ
dX ¼

XNðkÞe

i¼1

1
3
ð1� a2ÞV ðiÞe ¼ ð1� a2ÞV ðkÞ: ð22Þ

Using Eqs. (21) and (22), Eq. (19) now is written as

KN-SFEM-T3
IJðkÞ ¼ ð1� a2ÞeBT

I DeBJV
ðkÞ; ð23Þ

which implies that we can simplify the procedure of coding pro-
gram of the aFEM-T3 by using the original N-SFEM-T3 in which
each triangle only needs to be divided into three quadrilaterals of
equal area to calculate entries of the stiffness matrix and then mul-
tiply (1 � a2).

To calculate Eq. (20), the standard FEM using triangular ele-
ments is used to calculate the entries of the stiffness matrix and
then the parameter a2 is multiplied.

Now, the aFEM-T3 is equipped with a scaling factor a that acts
as a knob controlling the contributions from the N-SFEM-T3 and
the FEM. When the factor a varies from 0 to 1, a continuous solu-
tion function from the solution of the N-SFEM to that of the FEM
is obtained.

2.4. An alpha finite element method for tetrahedral elements
(aFEM-T4) for 3D problems

Following the same concept of the aFEM-T3, we develop a tetra-
hedral element for aFEM for 3D problems (aFEM-T4). The volume
Ve of each tetrahedral element will be divided into five parts based
on the scale factor a: four volumes at four corners with equal vol-
ume of ð1�a3Þ

4 Ve and the remaining part in the middle of the element
of volume a3Ve. The N-SFEM is used to calculate for four corner
parts of equal volumes, while the FEM-T4 is used to calculate for
N-SFEM

N-SFEM

N-SFEM
FEM

bb

1=
3

area

2
2area =

2

h
h

(1-    )

αFEM-T3

Ve

eV

=
-side
int

1

. N-SFEM is used for three quadrilaterals, and FEM is used for the Y-shaped area in



G.R. Liu et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 3883–3897 3887
the remaining volume in the middle. The system stiffness matrix
KaFEM-T4 is then calculated using

KaFEM-T4
IJ ¼

XNn

k¼1

KN-SFEM-T4
IJðkÞ þ

XNe

l¼1

KFEM-T4
IJðlÞ ð24Þ

with the matrices KN-SFEM-T4
IJðkÞ and KFEM-T4

IJðlÞ calculated as follows:

KN-SFEM-T4
IJðkÞ ¼ ð1� a3ÞeBT

I DeBJV
ðkÞ ð25Þ

KFEM-T4
IJðlÞ ¼

Z
XðaÞe

BT
I DBJ dX ¼ BT

I DBJa
3Ve ð26Þ

in which XðaÞe is the remaining volume in the middle of the element;
the smoothed strain matrix eBI is calculated using Eq. (15), V(k) is cal-
culated using Eq. (12) and the compatible strain matrix BI is calcu-
lated using Eq. (6).

3. Properties of the aFEM-T3 and aFEM-T4

In the case of homogeneous essential boundary conditions, the
aFEM-T3 and aFEM-T4 will have the following important properties

Property 1 (displacement compatibility). The assumed displace-
ment field is compatible (linearly continuous through out the domain)
in the aFEM-T3 and aFEM-T4. This property can be explicitly seen from
the aFEM-T3 and aFEM-T4 formulation procedure: linear element
based interpolation is used through out the entire problem domain.
This property ensures that the aFEM-T3 and aFEM-T4 for any a 2 [0,1]
will be able to reproduce exactly the linear field. This will be confirmed
in the patch tests given in Section 5.

Property 2 (variational consistence). The aFEM-T3 (or aFEM-T4) is
variationally consistent.

Proof. In the aFEM-T3, besides the compatible strain e = $su is
used for NeY-shaped areas XðaÞe of elements, the smoothed strain
(8) is used for Nn smoothing cells X(k,a) associated with Nn nodes
in the generalized Galerkin weak form, the variational consistency
thus needs to be examined. To this end, we start with the modified
Hellinger–Reissner variational principle [28] with the assumed
strain vector ~e and displacements u as independent field variables
in which note that ~e ¼ e for NeY-shaped areas XðaÞe of elements:

Uðu;~eÞ ¼ �
Z

X

1
2

~eTD~edXþ
Z

X
ðD~eÞTðrsuÞdX�

Z
X

uTbdX�
Z

Ct

uT�tdC:

ð27Þ

Performing the variation using the chain rule, one obtains

dUðu;~eÞ ¼ �
Z

X
d~eTD~edXþ

Z
X

d~eTDðrsuÞdXþ
Z

X

~eTDðrsduÞdX

�
Z

X
duTbdX�

Z
Ct

duT�tdC ¼ 0: ð28Þ

Discretizing the domain X into Ne triangles Xe including Nn

smoothing cells X(k,a) associated with Nn nodes and Ne Y-shaped
areas XðaÞe corresponding to the Ne elements, and then substituting
the approximations (2) and (13) into (28) and using the arbitrary
property of variation, we obtain

Ktwo�fieldd ¼ f; ð29Þ

where Ktwo-field is the smoothed stiffness matrix and f is the element
force vector given by

Ktwo-field
IJ ¼�

Z
Xðk;aÞ
ðeBa

I Þ
TDeBa

J dXþ 2
Z

Xðk;aÞ
ðeBa

I Þ
TDBJ dX

�
Z

XðaÞe

ðeBa
I Þ

TDeBa
J dXþ 2

Z
XðaÞe

ðeBa
I Þ

TDBJ dX; ð30Þ

f I ¼
Z

Xe

NT
I ðxÞbdXþ

Z
Ct

NT
I ðxÞ�tdC: ð31Þ
Due to ~e ¼ e for NeY-shaped areas XðaÞe of elements, the smoothed
strain matrix eBa

I is also the standard compatible strain matrix BI,
then Eq. (30) becomes

Ktwo-field
IJ ¼ �

Z
Xðk;aÞ
ðeBa

I Þ
TDeBa

J dXþ 2
Z

Xðk;aÞ
ðeBa

I Þ
TDBJðxÞdX

þ
Z

XðaÞe

BT
I DBJ dX: ð32Þ

Using smoothed matrices eBI in Eq. (14) for Nn smoothing cells
X(k,a) associated with Nn nodes, we haveZ

Xðk;aÞ

eBT
I DBJðxÞdX ¼ eBT

I D
Z

Xðk;aÞ
BJðxÞdX

¼ eBT
I DAðk;aÞ

Z
Xðk;aÞ

BJðxÞ
Aðk;aÞ

dX ¼ eBT
I DeBJA

ðk;aÞ

¼
Z

Xðk;aÞ

eBT
I DeBJ dX; ð33Þ

which means that the following orthogonal condition is satisfied
[29]Z

Xðk;aÞ

eBT
I DBJðxÞdX ¼

Z
Xðk;aÞ

eBT
I DeBJ dX ð34Þ

then Eq. (32) becomes

Ktwo-field
IJ ¼

Z
Xðk;aÞ
ðeBa

I Þ
TDeBa

J dXþ
Z

XðaÞe

BT
I DBJ dX: ð35Þ

The aFEM-T3 uses directly Eq. (35) to calculate the stiffness
matrix, therefore, the aFEM-T3 is ‘‘variationally consistent”. This
proof is applicable also the same for the aFEM-T4.

Note that although the two-field Hellinger-Reissner principle is
used, the aFEM has only the displacements as unknowns. Therefore,
it is very much different from the so-called mixed FEM formulation,
where stresses (or strains) are usually also unknowns. h

Property 3 (lower bound property). When a = 1.0, the aFEM-T3 and
aFEM-T4 become the standard FEM. The strain energy E(a = 1) is an
underestimation of the exact strain energy.

Property 4 (upper bound property). When a = 0.0, the aFEM-T3 and
aFEM-T4 becomes the N-SFEM. The strain energy E(a = 0) is an overes-
timation of the exact strain energy.

A proof procedure and arguments that shows the same upper bound
property of the LC-PIM can be found in Ref. [15]. An intuitive
explanation on why the N-SFEM can always produce upper bound
solution was also presented in Ref. [14]. The numerical examples in
Section 6 of this paper will confirm the property without any exception.

Property 5 (solution continuity property). When a changes from 0.0
to 1.0, the solutions of the aFEM-T3 and aFEM-T4 are continuous func-
tions of a from the solution of the N-SFEM and that of the standard FEM.

Property 6 (exact solution property). The exact solution in strain
energy exactly falls in the range of the aFEM-T3 and aFEM-T4 with
a 2 [0,1]. This means that the exact solution in strain energy can be
obtained using the aFEM-T3 and aFEM-T4 with an aexact 2 [0,1].

This property is a natural outcome of the Property 3–5. Based on 6,
one can devise the following procedure to compute the exact solution
in strain energy.

Our numerical study has shown that using the meshes with the
same aspect ratio, the strain energy curves E(a) corresponding to these
meshes will intersect at a common point (aexact, Eexact) which gives the
nearly exact strain energy of the problem. The corresponding
displacement solution of the aFEM-T3 and aFEM-T4 at aexact for the
meshes with the same aspect ratio is also much better than those of
either the standard FEM or the N-SFEM. This procedure will be used in
numerical examples to obtain nearly exact solutions in strain energy.
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Note that the meshes with the same aspect ratio are defined in two
ways: one for regular meshes and one for irregular meshes. For regular
meshes which are usually used only for the regular domains, the ratio
of number of elements discretized along coordinate directions has to
be the same. For example, for the rectangular 2D meshes, the same
aspect ratio of three meshes (16 � 4), (32 � 8) and (64 � 16) is 4. For
irregular meshes used for any domains, the meshes with the same
aspect ratio are obtained by dividing each element of the initial coarse
mesh into 22, 32, 42, etc. equal elements for triangular elements, and
into 23, 33, 43, etc. equal elements for tetrahedral elements. The
refinement from the initial coarse mesh to obtain the meshes with the
same aspect ratio is available in many automatic programs creating
three-node triangular and four-node tetrahedral elements without any
difficulty. Note that, we do not require the elements in a mesh to have
the same aspect ratio. We require only two consequent meshes to have
the same aspect ratio.

Property 7. The stiffness matrix of the aFEM-T3 (or aFEM-T4) has the
same unknowns of only the displacement, the same bandwidth and
sparsity as that of the standard FEM, and hence the same computa-
tional complexity.

Property 8. For the nearly incompressible case (m approaches to
0.5) in the plane strain problem, the volumetric locking can be
solved by using a = 0 or a very small a = 0.5 � v for the proposed
elements, where m is the Poisson’s ratio that is smaller but very close
to 0.5. Note that, for this kind of problems, we have to give up on
the ‘‘exact” solution, and only focus on solving the volumetric
locking.

In the above formulation of the aFEM-T3 (or aFEM-T4), only the
area (or volume), the usual compatible strain matrices BI of trian-
gular (or tetrahedral) elements together the factor a are needed to
calculate the system stiffness matrix. In the actual programming,
the standard FEM and the N-SFEM-T3 (or N-SFEM-T4) formulae
are used directly to calculate the entries of the stiffness matrices
and then the results obtained are scaled by a2 and (1 � a2), respec-
tively, as shown in Eqs. (20) and (23) for the aFEM-T3 (or by a3 and
(1 � a3), respectively, as shown in Eqs. (25) and (26) for the aFEM-
T4). Therefore, our aFEM-T3 (or aFEM-T4) code is very similar to a
standard FEM code, and the bandwidth or sparsity of the stiffness
matrix of aFEM-T3 (or aFEM-T4) and that of FEM is exactly the
same. The CPU cost for solving the system equations will also be
largely the same.
4. Numerical implementation

4.1. Exact solution for linear mechanics problems

Numerical procedure for computing the exact solution using the
aFEM-T3 and aFEM-T4 can be summarized as follows:

1. Discretize the domain X into two sets of mesh of coarse tri-
angular (for 2D problems) or tetrahedral (for 3D problems)
elements with the same aspect ratio.

2. Choose one array of a 2 0 : 1, for example
a = [0.0 0.2 � � � 0.8 1.0]T.

3. Loop over two sets of mesh created in step 1.
4. Loop over the array of a 2 0 : 1.
5. Loop over all the elements (use the standard FEM):
– Compute and save the gradient matrix B of the element
by Eq. (6).

– Evaluate the stiffness matrix and force vector of the ele-
ment by Eqs. (7) and (5).

– Multiply the stiffness matrix of the element with a2 for
triangular elements by Eq. (20) or with a3 for tetrahedral
elements by Eq. (26) and then assemble into the global
stiffness matrix.

– Assemble force vector into the global force vector.

6. End the loop over all the elements.
7. Loop over all the nodes (use the N-SFEM-T3):
– Use the gradient matrices B of the element saved in step
5 to compute the gradient matrix eB of the node by Eq.
(14) for the triangular elements or by Eq. (15) for the tet-
rahedral elements.

– Evaluate the stiffness matrix of the node by Eq. (17).
– Multiply the stiffness matrix of the node with (1 � a2) for

triangular elements by Eq. (23) or (1 � a3) for tetrahedral
elements by Eq. (25) and then assemble into the global
stiffness matrix.
8. End the loop over all the nodes.
9. Implement essential boundary conditions.

10. Solve the system equations for the nodal displacements.
11. Evaluate strain, stress and save the global strain energy.
12. End the loop over the array containing a 2 0 : 1.
13. End the loop over two sets of coarse meshes.
14. Interpolate the exact strain energy at aexact from two arrays

containing the strain energies saved at step 11.
15. Use aexact and a finer discretization with the same aspect

ratio as the two coarse meshes to calculate the desired solu-
tion through steps from 5 to 11.

Note that, if we only need to improve the accuracy of solution, it
is recommended to use directly an a 2 0:5 : 0:7 for any meshes
without knowing aexact. This range of a 2 0:5 : 0:7 is found by
numerical ‘‘experiments” on different linear problems using the
aFEM-T3 and aFEM-T4. By this way, the a chosen may not be opti-
mal and the solution may not be exact, but the accuracy of the
solution is often much better than FEM.

Based on the theory presented, we know that in any case, the
accuracy (in energy norm) of the proposed method is always better
than either FEM or N-SFEM for any a 2 (0,1). This gives us a guar-
antee that we can only get a better solution using any a 2 (0,1).

4.2. Volumetric locking problems

As presented at Property 8 in Section 3, it is recommended to
use a = 0 or a very small a = 0.5 � v for the proposed elements,
where m is the Poisson’s ratio that is smaller but very close to 0.5.
One numerical example about this will be performed in Section 6.

4.3. Nonlinear problems of large deformation

For the nonlinear problems of large deformation, the values of
the strain gradient matrices and stresses at the nodes are the aver-
age values of those of the adjacent elements around the node, and
all the techniques used in the FEM can be employed. The finite ele-
ment model of the aFEM-T3 for nonlinear problems of large defor-
mation based on the total Lagrange formulation [22,27] is
expressed as follows:

ðKaFEM
L þ KaFEM

NL Þd ¼ f � f1; ð36Þ

where

KaFEM
L ¼

XNn

k¼1

ð1� a2ÞeBT
L DeBLV ðkÞ þ

XNe

e¼1

a2BT
L DBLVe ð37Þ

KaFEM
NL ¼

XNn

k¼1

ð1� a2ÞeBT
NL
eSeBNLV ðkÞ þ

XNe

e¼1

a2BT
NLSBNLVe ð38Þ

f1 ¼
XNn

k¼1

ð1� a2ÞeBT
LfeSgV ðkÞ þXNe

e¼1

a2BT
LfSgVe ð39Þ
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with
BL ¼
F11N1;1 F21N1;1 F11N2;1 F21N2;1 F11N3;1 F21N3;1

F12N1;2 F22N1;2 F12N2;2 F22N2;2 F12N3;2 F22N3;2

F11N1;2 þ F12N1;1 F21N1;2 þ F22N1;1 F11N2;2 þ F12N2;1 F21N2;2 þ F22N2;1 F11N3;2 þ F12N3;1 F21N3;2 þ F22N3;1

264
375; ð40Þ

Table 1
Displacement error norm ed (%)

a = 0.0
(N-SFEM)

a = 0.2 a = 0.4105a a = 0.6038a a = 0.8 a = 1.0
(FEM)

0.2757
e�12

1.6029
e�12

1.4327
e�12

2.1737
e�12

0.7946
e�12

1.6499
e�12

a Arbitrarily generated number.
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Fig. 4. Domain discretization of a square patch using three-node triangular
elements.
eBL ¼
1

V ðkÞ
XNðkÞe

i¼1

1
3

V ðiÞe BðiÞL ; ð41Þ

BNL ¼

N1;1 0 N2;1 0 N3;1 0
N1;2 0 N2;2 0 N3;2 0

0 N1;1 0 N2;1 0 N3;1

0 N1;2 0 N2;2 0 N3;2

26664
37775 and

eBNL ¼
1

V ðkÞ
XNðkÞe

i¼1

1
3

V ðiÞe BðiÞNL;

ð42Þ

S ¼

S11 S12 0 0
S12 S22 0 0
0 0 S11 S12

0 0 S12 S22

26664
37775 and eS ¼ 1

V ðkÞ
XNðkÞe

i¼1

1
3

V ðiÞe SðiÞ; ð43Þ

where the second Piola–Kirchhoff stress tensor {S} is derived from

fSg ¼
S11

S22

S12

264
375 ¼ D

E11

E22

2E12

264
375 and feSg ¼ 1

V ðkÞ
XNðkÞe

i¼1

1
3

V ðiÞe fSg
ðiÞ ð44Þ

with the Green–Lagrange strain tensor E of the elements is calcu-
lated by

E ¼
E11 E12

E21 E22

� �
¼ 1

2
ðFTF� IÞ; ð45Þ

where I is the second order unit matrix and the deformation gradi-
ent tensor F of the elements is derived from

F ¼
F11 F12

F21 F22

� �
¼ @x

@X

� �T

¼ ðrdþ IÞT: ð46Þ

Note that in Eq. (40) and (42), NI;j ¼ @NI
@Xj

.

For nonlinear problems of large deformation, it is generally dif-
ficult to obtain the ‘‘exact” solution. Our aim is thus to improve the
accuracy of the solution. Similarly to linear problems, it is recom-
mended that an a 2 0:5 : 0:7 is used directly for nonlinear problems
of large deformation. For such an a, the accuracy of the solution is
often much better than FEM. In other way, we can also use the
optimal value a obtained from the small deformation problem
based on the scaled meshes and apply for large deformation. By
this way, the a chosen is not optimal for the nonlinear problem
and we will not obtain the exact solution, but it still much better
than the pure FEM solution.

The formulation presented above is straightforward to
extend to the aFEM-T4 for 3D problems using tetrahedral
elements. Two numerical examples about this will be performed
in Section 6.

5. Standard patch tests

5.1. Standard patch test for 2D problems

Satisfaction of the standard patch test requires that the dis-
placements of all the interior nodes follow ‘‘exactly” (to machine
precision) the same linear function of the imposed displacements
on the edges of the patch. An irregular domain discretization of a
square patch using 58 three-node triangular elements is shown
in Fig. 4.

The parameters are taken as E = 100, m = 0.3 and linear displace-
ment field is given by

u ¼ x;

v ¼ y:
ð47Þ

The following error norm in displacements is used to examine
the computed results.

ed ¼
Pndof

i¼1 jui � uh
i jPndof

i¼1 juij
� 100%; ð48Þ

where ui is the exact solution and uh
i is the numerical solution.

It is found that the aFEM-T3 can pass the standard patch test
within machine precision regardless of the value of a 2 [0,1] used
as shown in Table 1. This example confirms Property 1 for 2D prob-
lems: the aFEM is displacement compatible and hence will always
converge.

5.2. Irons first-order patch test for 3D problems

Satisfaction of the first-order patch test requires that the dis-
placements of all the interior nodes follow ‘‘exactly” (to machine
precision) the same linear function of the imposed displacement
on the surfaces of the patch and constant strain/stress states are



Table 2
Displacement error norm ed (%)

a = 0.0
N-SFEM (tetrahedral element)

a = 0.2 a = 0.4083a a = 0.6149a a = 0.8 a = 1.0 FEM

ed (%) 0.08 e�12 0.23 e�12 0.82 e�12 1.46 e�12 13.06 e�12 0.06 e�12

a Arbitrarily generated number.
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Fig. 5. Domain discretization of a cubic patch using four-node tetrahedral
elements.
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Fig. 6. Model of the cantilever loaded at the end.
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reproduced. An irregular spatial discretization of a cubic patch
using 100 four-node tetrahedral elements is shown in Fig. 5.

The related parameters are taken as E = 6.895 � 106 kPa, m = 0.25
and linear displacement field is given by

u ¼ 0:001 � ð2xþ yþ zÞ=2; v ¼ 0:001 � ðxþ 2yþ zÞ=2;

w ¼ 0:001 � ðxþ yþ 2zÞ=2: ð49Þ

The displacement error norm is given by Eq. (48) and the energy
error is defined by

eeðaÞ ¼ jEðaÞ � Eexactj; ð50Þ

where the total strain energy of numerical solution E(a) and the
total strain energy of exact solution Eexact are calculated by

EðaÞ ¼EFEMðaÞ þ EN-SFEMðaÞ

¼1
2

Xnel

i¼1

ðeh
i Þ

TDeh
i a

3V ðiÞe þ
1
2

Xnnode

k¼1

ð~eh
kÞ

TD~eh
kð1� a3ÞV ðkÞn ; ð51Þ

Eexact ¼
1
2

eTDeVcubic; ð52Þ

where nel is the total number of element of the problem, nnode is
the total number of node of the problem, e is the strain of exact
solution, eh

i is the strain of numerical solution of the ith element,
~eh

k is the smoothed strain of numerical solution at the kth node.
It is found that the aFEM-T4 can pass the standard first-order

patch test within machine precision regardless of the value of
a 2 [0,1], as shown in Tables 2 and 3. There is no accuracy loss
due to the choice of a value. This example confirms Property 1
for 3D problems.
Table 3
Strain energy error ee

a = 0.0 N-SFEM (tetrahedral element) a = 0.2

ee 2.55 e�11 2.55 e�11

a Arbitrarily generated number.
6. Numerical examples

In order to study the convergence rate of the present method,
two norms are used here, i.e., displacement norm and energy norm.
The displacement norm is given by Eq. (48) and the energy error
norm is defined by

eeðaÞ ¼ jEðaÞ � Eexactj1=2
; ð53Þ

where the total strain energy of numerical solution E(a) is given by
Eq. (51) and the total strain energy of exact solution Eexact is calcu-
lated by

Eexact ¼
1
2

lim
nel!1

Xnel

i¼1

eT
i DeiV

ðiÞ
e ; ð54Þ

where ei is the strain of exact solution. In the actual computation
using Eq. (54), we will use a very fine mesh (nel ?1) to calculate
the ‘‘exact” strain energy Eexact.
6.1. Cantilever beam under a tip load: convergence study

A cantilever with length L and height D is studied as a bench-
mark problem here, which is subjected to a parabolic traction at
the free end as shown in Fig. 6. The cantilever is assumed to have
a unit thickness so that plane stress condition is valid. The analyt-
ical solution is available and can be found in a textbook by Timo-
shenko and Goodier [30].

ux ¼
Py
6EI

ð6L� 3xÞxþ ð2þ mÞ y2 � D2

4

 !" #
;

uy ¼ �
P

6EI
3my2ðL� xÞ þ ð4þ 5mÞD

2x
4
þ ð3L� xÞx2

" #
;

ð55Þ

where the moment of inertia I for a beam with rectangular cross
section and unit thickness is given by I ¼ D3

12.
a = 0.4083a a = 0.6149a a = 0.8 a = 1.0 FEM

2.55 e�11 2.55 e�11 2.55 e�11 2.55 e�11



Fig. 7. Domain discretization using regular triangular elements.
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Fig. 8. Strain energy.
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The stresses corresponding to the displacements Eq. (55) are

rxxðx; yÞ ¼
PðL� xÞy

I
; ryyðx; yÞ ¼ 0; sxyðx; yÞ ¼ �

P
2I

D2

4
� y2

 !
:

ð56Þ
The related parameters are taken as E = 3.0 � 107 kPa, m = 0.3,

D = 12 m, L = 48 m and P = 1000 N. In the computations, the nodes
on the left boundary are constrained using the exact displacements
obtained from Eq. (55) and the loading on the right boundary uses
the distributed parabolic shear stresses in Eq. (56).

In order to compare the results of the aFEM-T3 using triangular
elements with those of the standard FEM using four-node quadri-
lateral elements that are most widely used, the regular meshes with
the same aspect ratio are used. One domain discretization of these
meshes is shown in Fig. 7. The exact strain energy of the problem is
4.4746. As shown in Fig. 8, the estimated strain energy at the inter-
section of strain energy curves are 4.4803 at aexact = 0.5635. The re-
sults are compared with the other methods: the FEM using
quadrilateral elements (FEM-Q4), the FEM using triangular ele-
ments (FEM-T3), and the N-SFEM using triangular elements (N-
SFEM-T3). This example problem reveals the following facts: (1)
the results of the aFEM-T3 in both the displacement and energy er-
ror norms at aexact = 0.5635 are much better than any of method, as
shown in Figs. 9 and 10; (2) the FEM-Q4 is more accurate than
either FEM-T3 or N-SFEM-T3, which justify why FEM-Q4 is much
more widely used; (3) the aFEM-T3 gives much more accurate re-
sults than the popular FEM-Q4 in both norms. This finding is very
important because we now can use triangular elements that can
be generated automatically to obtain solutions that is far more
accurate than quadrilateral elements that is difficult to generate
automatically for complicated domains.

6.2. Cook’s membrane: test for membrane elements in the skewed
mesh

This benchmark problem, shown in Fig. 11, refers to a clamped
tapered panel subjected to an in-plane shearing load, resulting in
deformation dominated by a bending response. This is a well
known Cook’s membrane problem [31] with Young’s modulus
E = 1, Poisson’s ratio m = 1/3. The exact solution of the problem is
unknown. Under plane stress conditions, the reference value of
the vertical displacement at center tip section is 23.9642 [32]
and the reference value of the strain energy is 12.015 [31]. Use
the aFEM-T3, from Fig. 12, the estimated solutions at aexact = 0.5085
are 23.9748 for displacement tip and 12.0242 for strain energy.

Fig. 13 compare the result of displacement tip of the aFEM-T3
with six published four-node quadrilateral elements: Q4-standard
isoparametric 2 � 2 quadrature Gauss points, Qm6-modified Wil-
son element [33], FB-one Gauss point with hourglass stabilization
[34], QBI-Quintessential bending/incompressible element [35],
KF-one Gauss point with hourglass control [36] and Qnew – an
improved stabilization technique for one-point quadrature inte-
gration method [32]. It can be seen that the result of the aFEM-
T3 at aexact = 0.5085 is more accurate than those of all the other
elements, even with coarse meshes.

In addition to the results shown in Fig. 13, we make comparison
of the aFEM-T3 with other elements for coarse meshes, and the re-
sults in numbers are listed in Table 4: Allman’s membrane triangle



Fig. 11. Cook’s membrane problem and its dicretization.
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Table 4
Results of displacement tip and strain energy for Cook’s problem

Displacement tip Strain energy

Elements Mesh 4 � 4 Mesh 8 � 8 Mesh 4 � 4 Mesh 8 � 8

AT 22.41 (75)a 23.45 (243) 11.22 11.75
P–S 23.02 (50) 23.69 (162) 11.51 11.85
CH(0–1) 23.48 (50) 23.81 (162) 11.75 11.91
ECQ4/LQ6 23.48 (50) 23.81 (162) 11.75 11.91
HMQ/HQ4 23.04 (50) 23.69 (162) 11.52 11.85
a FEM-T3 23.56 (50) 23.99 (162) 11.77 12.00
Reference value 23.9642 23.9642 12.015 12.015

a Number of degrees of freedom denoted in parenthesis.
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(AT) [1], assumed stress hybrid methods such as Pian–Sumihara’s
element (P–S) [37], HQM/HQ4 element [38], Zhou–Nie’s element
(CH(0–1)) [39] and Xie–Zhou’s element (ECQ4/LQ6) [40]. It is again
found that the aFEM-T3 at aexact = 0.5085 gives the excellent per-
formance compared to other elements.
6.3. Infinite plate with a circular hole: test for volumetric locking

Fig. 14 represents a plate with a central circular hole of radius
a = 1 m, subjected to a unidirectional tensile load of r = 1.0 N/m
at infinity in the x-direction. Due to its symmetry, only the upper
right quadrant of the plate is modeled. Plane strain condition is
considered and E = 1.0 � 103 N/m2, m = 0.4/0.49/0.499/0.4999/
0.49999/0.499999/0.4999999. Symmetric conditions are imposed
on the left and bottom edges, and the inner boundary of the hole
is traction free. The exact solution for the stress is [30]

r11 ¼ 1� a2

r2

3
2

cos 2hþ cos 4h

� �
þ 3a4

2r4 cos 4h;

r22 ¼ �
a2

r2

1
2

cos 2h� cos 4h

� �
� 3a4

2r4 cos 4h;

s12 ¼ �
a2

r2

1
2

sin 2hþ sin 4h

� �
þ 3a4

2r4 sin 4h;

ð57Þ

where (r,h) are the polar coordinates and h is measured counter-
clockwise from the positive x-axis. Traction boundary conditions
are imposed on the right (x = 5.0) and top (y = 5.0) edges based on
the exact solution Eq. (57). The displacement components corre-
sponding to the stresses are

u1 ¼
a

8l
r
a
ðjþ 1Þ cos hþ 2

a
r
ðð1þ jÞ cos hþ cos 3hÞ � 2

a3

r3 cos 3h

� �
;

u2 ¼
a

8l
r
a
ðj� 1Þ sin hþ 2

a
r
ðð1� jÞ sin hþ sin 3hÞ � 2

a3

r3 sin 3h

� �
;

ð58Þ

where l = E/(2(1 + m)), j is defined in terms of Poisson’s ratio by
j = 3 � 4m for plane strain cases.

For the plane strain problem in the nearly incompressible case,
a = 0 and a = 0.5 � m as presented in Section 4.2 will be used in the



Fig. 14. Infinite plate with a circular hole and its quarter model.

Table 5
Displacement error norm (%) vs. different Poisson’s ratios

Mesh Poisson’s
ratios

aFEM-T3
a = 0

aFEM-T3
a = 0.5 � m

FEM-
T3

FEM-Q4

12 � 12 m = 0.4 1.6937 1.7520 0.5633
12 � 12 m = 0.49 1.6222 1.5957 4.9955 2.9279
12 � 12 m = 0.499 1.6188 1.6148 7.7692 9.6562
12 � 12 m = 0.4999 1.6192 1.6188 8.3926 15.7707
12 � 12 m = 0.49999 1.6193 1.6192 8.4680 17.1450
12 � 12 m = 0.499999 1.6193 1.6192 8.4759 17.3087
12 � 12 m = 0.4999999 1.6193 1.6192 8.4767 17.3253
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Fig. 15. Displacement error norm vs. different Poisson’s ratios.
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Fig. 16. The initial and final configuration of a 2D cantilever beam subjected to a tip
load.

G.R. Liu et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 3883–3897 3893
aFEM-T3. Table 5 and Fig. 15 show the displacement error norm vs.
different Poisson’s ratios for the aFEM-T3, FEM-T3 and the FEM-Q4
(mesh 12 � 12). The results show that the aFEM-T3 avoids the vol-
umetric locking naturally, while the FEM-T3 and FEM-Q4 are
clearly suffered from the volumetric locking. The results of the
aFEM-T3 using a = 0.5 � m are little better than those simply using
a = 0, and hence are recommended by this paper. Note also that
using a = 0.5 � m can also help to stabilize the solution for dynamic
problems.

6.4. A cantilever beam subjected to a tip load: a large deformation
analysis

The use of aFEM for large deformation analysis of a cantilever
beam subjected to a concentrated tip load is now examined in this
example. The size of the beam is (10 cm � 2 cm) and initially dis-
cretized using mesh 20 � 4. The related parameters are taken as
E = 3.0 � 107 kPa, m = 0.3. The analysis based on the total Lagrange
formulation under the plane strain condition is carried out using
20 increment steps (n = 20) with DF = 10 KN in each step.

Fig. 16 plots the initial and final configuration after 20 steps of
increment of the deformation using the aFEM-T3 with a = 0.6.
Table 6 and Fig. 17 show the relation between the tip deflection
vs. the load step. The simulation converges in a very rapid speed
and in each load increment the iteration is performed less than 5
times. It can be seen that, with the same nodes, the FEM-T3 be-
haves much stiffer than the FEM-Q4. The results show that the
nonlinear effect makes the cantilever beam behave much stiffer
when compared to the linear solutions with the increase of load-
ing. The results of the FEM-Q4 is bounded by those of aFEM-T3
using a = 0.5 and a = 0.7 in a very small range. When a = 0.6 is used,
the aFEM-T3 is quite close to the FEM-Q4. This shows that the
aFEM-T3 with a 2 0:5 : 0:7 works well in the 2D nonlinear analysis
compared to solution of the FEM-Q4.

6.5. A 3D cubic cantilever: accuracy study

Consider a 3D cantilever of cubic shape, submitted to a uniform
pressure on its upper face as shown in Fig. 18. The exact solution of
the problem is unknown. By incorporating the solutions of hexahe-
dral super-element elements and the procedure of Richardson’s



Table 6
Tip deflection (cm) vs. the load step

Load
step

FEM-T3
(linear)

FEM-T3
(nonlinear)

FEM-Q4
(linear)

FEM-Q4
(nonlinear)

aFEM-T3 (a = 0.5)
(nonlinear)

aFEM-T3 (a = 0.6)
(nonlinear)

aFEM-T3 (a = 0.7)
(nonlinear)

n = 2 0.2518 0.2440 (3)a 0.2989 0.2841 (3) 0.2972 (3) 0.2879 (3) 0.2776 (3)
n = 4 0.5037 0.4569 (3) 0.5977 0.5225 (3) 0.5440 (3) 0.5286 (3) 0.5118 (3)
n = 6 0.7555 0.6467 (3) 0.8966 0.7387 (3) 0.7699 (3) 0.7475 (3) 0.7234 (3)
n = 8 1.0074 0.8272 (3) 1.1955 0.9541 (4) 0.9953 (4) 0.9657 (4) 0.9341 (4)
n = 10 1.2592 1.0101 (4) 1.4943 1.1614 (4) 1.2136 (4) 1.1761 (4) 1.1360 (4)
n = 12 1.5111 1.1847 (4) 1.7932 1.3684 (4) 1.4320 (4) 1.3864 (4) 1.3376 (4)
n = 14 1.7629 1.3589 (4) 2.0921 1.5754 (4) 1.6502 (4) 1.5966 (4) 1.5391 (4)
n = 16 2.0148 1.5330 (4) 2.3909 1.7821 (4) 1.8652 (5) 1.8047 (5) 1.7405 (4)
n = 18 2.2666 1.7069 (4) 2.6898 1.9844 (5) 2.0796 (5) 2.0114 (5) 1.9382 (5)
n = 20 2.5185 1.8795 (5) 2.9886 2.1872 (5) 2.2930 (5) 2.2173 (5) 2.1359 (5)

a The number in the bracket shows the number of iterations.
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Table 7
Deflection at point A

Mesh 1
(231 nodes)

Mesh 2
(659 nodes)

Mesh 3
(1429 nodes)

Reference
solution

FEM-T4 3.1406 3.2595 3.3079 3.3912
aFEM-T4 (aexact = 0.65) 3.3981 3.4051 3.4012 3.3912
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extrapolation, Almeida Pereira [41] gave an approximation of the
exact strain energy to be 0.950930. From Fig. 19, the estimated
strain energy obtained using aFEM-T4 is 0.95405 at aexact = 0.65.
The difference between the estimated strain energy with the refer-
ence solution is as small as 0.33%. Using standard FEM and a very
fine mesh with 30,204 nodes and 20,675 10-node tetrahedron ele-
ments, an other reference solution of the strain energy is found to
be E = 0.9486. Comparing to this reference solution, the difference
is also very small of 0.57%. Also from this reference, the deflection
at point A (1.0,1.0,�0.5) is 3.3912 and is compared with the results
of the aFEM-T4 and FEM-T4 as shown in Table 7. It is shown that
the aFEM-T4 at aexact = 0.65 gives the very good results even with
coarse mesh, while the standard FEM-T4 behaves very stiff and
converges much slower.

6.6. A 3D L-shaped block: accuracy study

Consider the 3D square block with a cubic hole subjected to the
surface traction q as shown in Fig. 20. Due to the double symmetry
of the problem, only a quarter of the domain is modeled, which
becomes a 3D L-shaped block. The analysis is performed using in-
put data: q = 1,a = 1, E = 1,m = 0.3. For this problem, the strain en-
ergy of 6.19985060 given by Cugnon [42] is considered as the
reference solution. From Fig. 21, the estimated strain energy of
the aFEM-T4 is 6.2057 at aexact = 0.6873. The difference between



Fig. 20. 3D L-shaped problem and a quarter of the domain modeled.
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Fig. 22. The initial and final configuration of a 3D cantilever beam subjected to the
regular distributed load using four-node tetrahedral elements.

Table 8
Tip deflection (m) vs. the load step

Load step FEM-T4
(linear)
(117 nodes)

FEM-T4
(nonlinear)
(117 nodes)

FEM-H8
(nonlinear)
(936 nodes)

aFEM-T4 (a = 0.7)
(nonlinear)
(117 nodes)

n = 2 0.1838 0.1814 (3)a 0.2413 (3) 0.2505 (3)
n = 4 0.3675 0.3504 (3) 0.4509 (3) 0.4659 (3)
n = 6 0.5513 0.5040 (3) 0.6386 (3) 0.6593 (3)
n = 8 0.7351 0.6462 (3) 0.8180 (3) 0.8452 (3)
n = 10 0.9189 0.7819 (3) 0.9991 (4) 1.0325 (4)
n = 12 1.1026 0.9141 (3) 1.1726 (4) 1.2128 (4)
n = 14 1.2864 1.0516 (4) 1.3452 (4) 1.3925 (4)
n = 16 1.4702 1.1797 (4) 1.5173 (4) 1.5717 (4)
n = 18 1.6540 1.3070 (4) 1.6887 (4) 1.7502 (4)
n = 20 1.8377 1.4337 (4) 1.8594 (4) 1.9251 (5)

a The number in the bracket shows the number of iterations.
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the estimated strain energy with the reference solution is as small
as 0.094%. Using standard FEM and a very fine mesh with 33,641
nodes and 22,862 10-node tetrahedron elements, an other refer-
ence solution of the strain energy is found to be E = 6.1916. Com-
paring to this reference solution, the difference is also very small
of 0.23%.

6.7. A 3D cantilever beam subjected to a regular distributed load:
a large deformation analysis

This example examines again the use of the aFEM for large
deformation analysis for 3D solids. A 3D cantilever beam subjected
to a regular distributed load is considered. The size of the beam is
(10 cm � 2 cm� 2 cm) and discretized using a mesh including 117
nodes and 298 tetrahedral elements. The related parameters are
taken as E = 3.0 � 107 kPa, m = 0.3. The analysis based on the total
Lagrange formulation is carried out using 20 increment steps
(n = 20) with Df = 2 KN/cm2 in each step.

Fig. 22 displays the initial and final configuration after 20 steps
of increment of the deformation using the aFEM-T4 with a = 0.7.
Table 8 and Fig. 23 show the relation between the tip deflection
vs. the load step of different methods. The simulation converges
in a very rapid speed and in each load increment, only less than five
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times of iteration are performed. It can be seen that, the nonlinear
effects make the cantilever beam behave stiffer compared to the
linear solutions. In the nonlinear analysis, when a = 0.7 is used,
the results of aFEM-T4 is softer than those of FEM-T4 and is
even very close to those of the FEM using eight-node hexahe-
dral element (FEM-H8) using 936 nodes. This shows that the
aFEM-T4 works very effectively for 3D nonlinear large deformation
analysis.

7. Conclusion

In this work, a novel alpha finite element method with a scale
factor a of three-node triangular (aFEM-T3) and four-node tetrahe-
dral (aFEM-T4) elements is proposed. Through the theoretical
study and numerical examples, the following major conclusions
can be drawn:

� The aFEM-T3 and aFEM-T4 ensure the variational consistence
and the compatibility of the displacement field, and hence they
guarantee to reproduce linear field exactly for any a 2 [0,1].

� The aFEM-T3 and aFEM-T4 are equipped with a scaling factor a
that controls the contributions from the N-SFEM and the FEM.
When the factor a varies from 0 to 1, a continuous solution func-
tion from the solution of the N-SFEM to that of the FEM is
obtained. When a = 0, the aFEM-T3 and aFEM-T4 becomes the
N-SFEM, and the strain energy E(a = 0) is an upper bound of
the exact strain energy. When a = 1, the aFEM-T3 and aFEM-T4
becomes the standard FEM, and the strain energy E(a = 1) is a
lower bound of the exact strain energy.

� From the observed behavior of the numerical results, a unique
approach of the aFEM-T3 and aFEM-T4 has been proposed to
obtain the nearly exact solution in strain energy for problems
using meshes with the same aspect ratio. The corresponding dis-
placement solution is also much better comparing those of the
standard FEM and the N-SFEM. The aFEM-T3 and aFEM-T4 are
capable to provide a ‘‘nearly exact” solution in strain energy
with very coarse meshes.

� The implementation of aFEM-T3 (or aFEM-T4) in practical appli-
cations is very easy and quite similar to the standard FEM
because of two reasons: (1) automatic refinement from an initial
coarse mesh to obtain the meshes with the same aspect ratio is
available in many automatic programs basing on creating three-
node triangular and four-node tetrahedral elements; (2) the pro-
posed methods use the strain matrices B of the standard FEM
and area (or volume) of elements to calculate the system stiff-
ness matrix. No new numerical integration is necessary.

� For the nearly incompressible cases of the plane strain problems,
some values of a are recommended to solve the volumetric lock-
ing problem.

� The aFEM-T3 and aFEM-T4 can be used to improve the accuracy
of the solutions of nonlinear problems of large deformation.

� The obtained result from this study is very promising and the
aFEM-T3 (or aFEM-T4) can be applied easily into the available
commercial software with little modification.

� The aFEM-T3 (or aFEM-T4) is suitable for adaptive analysis as it
uses only triangular and tetrahedral elements that can be auto-
matically generated for complicated domains.
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