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This paper presents a node-based smoothed finite element method (NS-FEM) for upper bound solutions
to solid mechanics problems using a mesh of polygonal elements. The calculation of the system stiffness
matrix is performed using strain smoothing technique over the smoothing cells associated with nodes,
which leads to line integrations along the edges of the smoothing cells. The numerical results demon-
strated that the NS-FEM possesses the following properties: (1) upper bound in the strain energy of
the exact solution when a reasonably fine mesh is used; (2) well immune from the volumetric locking;
(3) can use polygonal elements with an arbitrary number of sides; (4) insensitive to element distortion.
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1. Introduction

In order to determine the error in numerical solutions of com-
plicated problems without knowing the exact solution, it is practi-
cal to use two numerical models: one gives a lower bound and the
other gives an upper bound of the solution. The most popular mod-
els giving a lower bound in term of strain energy are the fully-com-
patible displacement finite element method (FEM) models, which
are widely used in solving complicated engineering problems.
The model that gives an upper bound can be one of the following
models: the stress equilibrium FEM model [1], the recovery of a
statically admissible stress field from displacement FEM model
[2–4], the hybrid equilibrium FEM model [5,6], the element-based
smoothed finite element method (SFEM) model [7,8], the aFEM
models [9,10], and the recently proposed LC-PIM model [11]. In
the so-called dual analysis in the FEM [1,12,13], a displacement
FEM model is usually combined with an equilibrium FEM model.
However, such a dual analysis procedure is not popular due to
some disadvantages referred to equilibrium models: (1) the equi-
librium approach is mathematically complex and hence difficult
to implement and more expensive computationally; (2) spurious
modes often occur due to the simple fact that tractions cannot be
equilibrated by the stress approximation field. Due to these draw-
ll rights reserved.

Thoi).
backs of the equilibrium FEM models, the estimation of the global
error based on the dual analysis is not widely used in practical
applications to complicated engineering problems.

In the other front of development, a conforming nodal integra-
tion technique has been proposed by Chen et al. [14] to stabilize
the solutions in the context of the meshfree method and then ap-
plied in the natural element method [15]. Liu et al. have applied
this technique to formulate the linear conforming point interpola-
tion method (LC-PIM) [16], the linearly conforming radial point
interpolation method (LC-RPIM) [17] and the element-based
smoothed finite element method (SFEM) [8,18]. Liu and Zhang
[11] have provided an intuitive explanation and showed numeri-
cally that when a reasonably fine mesh is used, the LC-PIM has
an upper bound property in the strain energy. The same finding
is obtained for LC-RPIM, meaning that the LC-RPIM also has the
similar upper bound property [17]. A more detailed theoretical
study on a generalized smoothing technique and the smoothed
Galerkin formulations has been conducted with intensive exami-
nation on the properties of the smoothed bi-linear forms and the
smoothed Galerkin solutions [31].

In order to make use of the upper bound property of the LC-PIM
and LC-RPIM from the meshfree context into the FEM framework
and to overcome the above disadvantages of the equilibrium FEM
models, this paper proposes a node-based smoothed finite element
method (NS-FEM) for upper bound solutions to solid mechanics
problems. The calculation of the system stiffness matrix is
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performed using strain smoothing technique over the cells associ-
ated with nodes, which leads to line integrations along the edges of
the smoothing cells and such an integration can be evaluated using
the interpolated shape function (not their derivatives). The numer-
ical results demonstrated that the NS-FEM possesses the following
properties: (1) when a reasonably fine mesh is used, it gives upper
bound (in the case of homogeneous essential boundary conditions)
in the strain energy of the exact solution; (2) it is well immune
from the volumetric locking; (3) it allows the use of polygonal ele-
ments with an arbitrary number of sides. One other important
advantage of the NS-FEM is that due to the use of the smoothed
strain, the domain integration on the cell becomes line integration
along the boundary of the cell, and the field gradients are com-
puted directly using only the shape functions themselves and no
explicit analytical form of shape functions is required. As a result,
no mapping or coordinate transformation is involved in the
NS-FEM and its element is allowed to be of arbitrary shape. The
problem domain can be discretized in more flexible ways, and even
severely distorted elements can be used.

The NS-FEM can be viewed as a variant model of FEM, but the
shape functions used in NS-FEM are in general different from those
in FEM. In NS-FEM, we do not construct shape functions explicitly,
instead we simply perform point interpolation using nodes within
the element that host the point of interest. The NS-FEM has very
attractive properties that are complementary to the FEM. It can
be applied easily to 4-node quadrilateral or triangular elements
without any modification in the formulation and procedures.
When only triangular elements are used, the NS-FEM produces
the same results as the method NIFEM proposed by Dohrmann
et al. [19] or to the LC-PIM using linear interpolation [20]. The
NS-FEM is more general than the NIFEM. For 2D problems, the
NS-FEM formulation can be applied for triangular, quadrilateral
and n-sided polygonal elements of any order, where the compati-
ble strain field is not generally constant. The NIFEM formulation
[19] is applicable only to uniform strain elements, and hence it
can be only applied to linear triangular/tetrahedron elements. In
addition, the numerical procedure of the NS-FEM and the NIFEM
are also different. The NS-FEM uses the value of shape function
at points and the integration of the weak form is performed along
the boundary of the smoothing cell associated with nodes, while
the NIFEM uses the derivative of shape functions and the integra-
tion of the weak form is based on the whole domain of the cell.
Hence, the NIFEM can be viewed as a special case of the NS-FEM.
Note also that, the NS-FEM is evolved from the SFEM [8,18] in
which the strain smoothing technique was applied based on ele-
ments, and they all have the same features of strain smoothing
operation.

The NS-FEM is different from the LC-PIM in the following ways.
The LC-PIM was basically conceived from the meshfree proce-
dures: shape functions are constructed using nodes beyond the
cells/elements, and they can be linear, quadratic or even higher
order depending on the number of nodes used in the support
domain. In the case of LC-RPIM [17], the selection of nodes can
practically be entirely free, and the consistency of the shape
functions can be arbitrarily high. The foundation of the LC-PIM is
based on the generalized smoothed gradient smoothing technique
[31]. Therefore, the NS-FEM can be considered as a special case of
the LC-PIM.

A simple and practical procedure is proposed to determine both
the upper and lower bounds in the strain energy, by combining the
NS-FEM with the standard FEM (for triangular and quadrilateral
elements) or with the element-based smoothed FEM (SFEM) (for
the n-sided polygonal elements) [18]. Such bounds are obtained
using only one set of mesh and without knowing the exact solution
of the problem that can be very complicated as long as a standard
FEM model can be built.
The paper is outlined as follows. In Section 2, the idea of the
NS-FEM is introduced. In Section 3, the variational basis of the
NS-FEM is presented. Construction of the NS-FEM shape function
is described in Section 4. In Section 5, the upper bound property
of the NS-FEM is presented briefly and numerical implementation
issues are discussed in Section 6. Some numerical examples are
analyzed in Section 7 and some concluding remarks are made in
Section 8.

2. The idea of the NS-FEM

2.1. Briefing on the finite element method (FEM) [21–23]

The discrete equations of the FEM are generated from the Galer-
kin weak form and the integration is performed on the basis of ele-
ment as follows:Z

X
ðrsduÞTDðrsuÞdX�

Z
X

duTbdX�
Z

Ct

duT�tdC ¼ 0; ð1Þ

where b is the vector of external body forces, D is a symmetric po-
sitive definite (SPD) matrix of material constants, �t is the prescribed
traction vector on the natural boundary Ct, u is trial functions, du is
test functions and rsu is the symmetric gradient of the displace-
ment field.

The FEM uses the following trial and test functions:

uhðxÞ ¼
XNP

I¼1

NIðxÞdI; duhðxÞ ¼
XNP

I¼1

NIðxÞddI; ð2Þ

where NP is the number of the nodal variables of the element, dI is
the nodal displacement vector and NI(x) is the shape function
matrix.

By substituting the approximations, uh and duh, into the weak
form and invoking the arbitrariness of virtual nodal displacements,
Eq. (1) yields the standard discretized algebraic system equation:

KFEMd ¼ f; ð3Þ

where KFEM is the stiffness matrix, f is the element force vector, that
are assembled with entries of

KFEM
IJ ¼

Z
X

BT
I DBJ dX; ð4Þ

f I ¼
Z

X
NT

I ðxÞbdXþ
Z

Ct

NT
I ðxÞ�tdC ð5Þ

with the strain matrix defined as

BIðxÞ ¼ rsNIðxÞ: ð6Þ
2.2. The NS-FEM for n-sided polygonal elements

In the NS-FEM, the domain discretization is still based on polyg-
onal elements of arbitrary number of sides, but the integration re-
quired in the weak form (1) is performed based on the nodes, and
strain smoothing technique [14] is used. In such a nodal integra-
tion process, the problem domain X is divided into smoothing cells
associated with nodes such that X ¼

PNn
k¼1X

ðkÞ and X(i) \X(j) = ;,
i – j, in which Nn is the total number of field nodes located in the
entire problem domain. For n-sided polygonal elements, the cell
X(k) associated with the node k is created by connecting sequen-
tially the mid-edge-point to the central points of the surrounding
n-sided polygonal elements of the node k as shown in Fig. 1. As a
result, each n-sided polygonal element will be divided into n
four-side sub-domains and each sub-domain is attached with the
nearest field node. The cell associated with the node k is then cre-
ated by combination of each nearest sub-domain of all elements
around the node k.



node k

cell (k)

(k)Γ

: central point of n-sided polygonal element : field node : mid-edge point

Fig. 1. n-Sided polygonal elements and the smoothing cells associated with nodes.
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Introducing the node-based smoothing operation, the strain
e =rsu used in Eq. (1) is assumed to be the smoothed strain on
the cell X(k) associated with node k:

~ek ¼
Z

XðkÞ
eðxÞUkðxÞdX ¼

Z
XðkÞ
rsuðxÞUkðxÞdX; ð7Þ

where Uk(x) is a given smoothing function that satisfies at least
unity propertyZ

XðkÞ
UkðxÞdX ¼ 1: ð8Þ

Using the following constant smoothing function:

UkðxÞ ¼
1=AðkÞ; x 2 XðkÞ;

0; x R XðkÞ;

(
ð9Þ

where AðkÞ ¼
R

XðkÞ dX is the area of the cell X(k) and applying the
divergence theorem, one can obtain the smoothed strain that is con-
stant over the domain X(k)

~ek ¼
1

AðkÞ

Z
CðkÞ

nðkÞðxÞuðxÞdC; ð10Þ

where C(k) is the boundary of the domain X(k) as shown in Fig. 1,
and n(k)(x) is the outward normal vector matrix on the boundary
C(k) and has the following form for 2D problems:

nðkÞðxÞ ¼
nðkÞx 0
0 nðkÞy

nðkÞy nðkÞx

2664
3775: ð11Þ

In the NS-FEM, the trial function uh(x) is the same as in Eq. (2) of
the FEM and therefore, the force vector f in the NS-FEM is calcu-
lated in the same way as in the FEM.

Substituting Eq. (2) into Eq. (10), the smoothed strain on the cell
X(k) associated with node k can be written in the following matrix
form of nodal displacements:

~ek ¼
X

I2NðkÞ

eBIðxkÞdI; ð12Þ

where N(k) is the number of nodes that are directly connected to
node k and eBIðxkÞ is termed as the smoothed strain matrix on the
cell X(k)
eBIðxkÞ ¼

~bIxðxkÞ 0

0 ~bIyðxkÞ
~bIyðxkÞ ~bIxðxkÞ

2664
3775 ð13Þ

and it is calculated numerically using

~bIhðxkÞ ¼
1

AðkÞ

Z
CðkÞ

nðkÞh ðxÞNIðxÞdC ðh ¼ x; yÞ: ð14Þ

When a linear compatible displacement field along the bound-
ary C(k) is used, one Gaussian point is sufficient for line integration
along each segment of boundary CðkÞi of X(k), the above equation
can be further simplified to its algebraic form

~bIhðxkÞ ¼
1

AðkÞ
XM

i¼1

nðkÞih NIðxGP
i Þl

ðkÞ
i ðh ¼ x; yÞ; ð15Þ

where M is the total number of the boundary segments of CðkÞi , xGP
i is

the midpoint (Gaussian point) of the boundary segment of CðkÞi ,
whose length and outward unit normal are denoted as lðkÞi and
nðkÞih , respectively.

Eq. (15) implies that in the NS-FEM, only shape function values
at some particular points along segments of boundary CðkÞi are
needed and no explicit analytical form is required. This gives tre-
mendous freedom in shape function construction which will be
presented in Section 4.

In particular for triangular elements, the smoothed strain ma-
trix eBIðxkÞ can be assembled by other way

eBIðxkÞ ¼
1

AðkÞ
XNðkÞe

j¼1

1
3

AðjÞe Bj ð16Þ

where NðkÞe is the number of elements around the node k; AðjÞe and Bj

are the area and the strain gradient matrix of the jth element
around the node k, respectively, and A(k) is calculated specifically by

AðkÞ ¼
Z

XðkÞ
dX ¼ 1

3

XNðkÞe

j¼1

AðjÞe ð17Þ

Note that with this formulation, only the area and the usual
‘‘compatible” strain matrices Bj by Eq. (6) of triangular elements
are needed to calculate the system stiffness matrix for the NS-
FEM. This formulation is quite straightforward to extend the NS-
FEM for the 3D problems using tetrahedral elements in which
the smoothed strain matrix eBIðxkÞ is assembled by

eBIðxkÞ ¼
1

V ðkÞ
XNðkÞe

j¼1

1
4

V ðjÞe Bj ð18Þ

where V ðjÞe and Bj are the volume and the compatible strain gradient
matrix of the jth tetrahedral element around the node k, respec-
tively, and V(k) is calculated specifically by

V ðkÞ ¼
Z

XðkÞ
dX ¼ 1

4

XNðkÞe

j¼1

V ðjÞe ð19Þ

The stiffness matrix eK of the system is then assembled by a sim-
ilar process as in the FEM

eKIJ ¼
XNn

k¼1

eKðkÞIJ ; ð20Þ

where eKðkÞIJ is the stiffness matrix associated with node k and is cal-
culated by

eKðkÞIJ ¼
Z

XðkÞ
eBT

I DeBJ dX ¼ eBT
I DeBJA

ðkÞ
: ð21Þ
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It can be seen that the cell element X(k) associated with node k
in the NS-FEM possesses the properties of a hybrid finite element:
(i) the stress satisfies the equilibrium equation inside the cell do-
main X(k) because the stress is constant due to smoothed strain;
(ii) the displacement field is linear compatible along the boundary
C(k). Property (ii) will be examined in detail through the shape
function construction in Section 4.

3. Variational basis of the NS-FEM

Property 1. The NS-FEM is variationally consistent.

Proof. In the NS-FEM, the generalized Galerkin weak form is used
with the smoothed strain (7) instead of the compatible strain
e =rsu, the variational consistency thus needs to be examined.
To this end, we start with the modified Hellinger–Reissner varia-
tional principle with the assumed strain vector ~e and displace-
ments u as independent field variables [24]:

Uðu;~eÞ¼�
Z

X

1
2

~eTD~edXþ
Z

X
ðD~eÞTðrsuÞdX�

Z
X

uTbdX�
Z

Ct

uT�tdC:

ð22Þ

Performing the variation using the chain rule, one obtains

dUðu; ~eÞ ¼ �
Z

X
d~eTD~edXþ

Z
X

d~eTDðrsuÞdXþ
Z

X

~eTDðrsduÞdX

�
Z

X
duTbdX�

Z
Ct

duT�tdC ¼ 0: ð23Þ

Substituting the approximations (2), (12) into (23) and using the
arbitrary property of variation, we obtain

Ktwo-fieldd ¼ f; ð24Þ

where Ktwo-field is the smoothed stiffness matrix given by Eq. (25),
and f is the element force vector given by Eq. (26)

Ktwo-field
IJ ¼ �

Z
X

eBT
I DeBJ dXþ 2

Z
X

eBT
I DBJðxÞdX; ð25Þ

¼ �
XNn

k¼1

Z
XðkÞ
eBT

I DeBJ dXþ 2
XNn

k¼1

Z
XðkÞ
eBT

I DBJðxÞdX

f I ¼
Z

X
NT

I ðxÞbdXþ
Z

Ct

NT
I ðxÞ�tdC: ð26Þ

Using smoothed matrices eBI in Eq. (13), the following orthogo-
nal condition is satisfied [25]:Z

XðkÞ
eBT

I DBJðxÞdX ¼ eBT
I D
Z

XðkÞ
BJðxÞdX

¼ eBT
I DAðkÞ

Z
XðkÞ

BJðxÞ
AðkÞ

dX ¼ eBT
I DeBJA

ðkÞ

¼
Z

XðkÞ
eBT

I DeBJ dX ð27Þ

and from Eq. (25) we then have

Ktwo-field
IJ ¼ KNS-FEM

IJ ¼
Z

X

eBT
I DeBJ dX ¼

XNn

k¼1

Z
XðkÞ
eBT

I DeBJ dX: ð28Þ

The NS-FEM uses directly Eq. (28) to calculate the stiffness matrix,
therefore, the NS-FEM is ‘‘variationally consistent”.
: central point of n-sided polygonal element : field node : mid-edge point

7

Fig. 2. Construction of simple averaging shape functions for n-sided polygonal
elements.
4. Construction of the NS-FEM shape function: point
interpolation technique

In the NS-FEM, by using the smoothed strain of the cell X(k)

associated with the node k, the domain integration becomes line
integration along the boundary C(k) of the cell. Only the shape
function itself at some particular points along segments of bound-
ary is used and no explicit analytical form is required. When a lin-
ear compatible displacement field along the boundary C(k) is used,
one Gauss point at midpoint on each edge is sufficient for accurate
boundary integration. The values of the shape functions at these
Gauss points, e.g., point #a on the edge A–B shown in Fig. 2, are
evaluated averagely using two related nodes on the edge: points
#A and #B.

In order to construct a linear compatible displacement field
along the boundary C(k) of the cell, the following conditions of
the shape functions for the discrete points of an n-sided polygonal
element need to be satisfied: (i) delta function: Ni(xj) = dij; (ii)
partition of unity:

Pn
i¼1NiðxÞ ¼ 1; (iii) linear consistency:Pn

i¼1NiðxÞxi ¼ x; (iv) linear compatibility: linear shape functions
along elements sides; (v) linear shape functions along lines con-
necting the central point and midpoints of sides, e.g., line B–A or
line B–C; (vi) values of the shape function for the central points
of n-sided polygonal elements, e.g., points #B or #I, are evaluated
as

1
n

1
n � � � 1

n

� �
ðsize : 1� nÞ ð29Þ

with the coordinates of the central points calculated simply using

xc ¼
1
n

Xn

i¼1

xi; yc ¼
1
n

Xn

i¼1

yi; ð30Þ

where the number of nodes n of the polygonal element may be dif-
ferent from one element to the other and xi, yi are the coordinates of
nodes of the n-sided polygonal element.

The condition (iii) is essential to reproduce the linear polyno-
mial fields such as in the standard patch test. With the condition
(iv), the values of the shape functions of the midpoints on the sides
of the elements, e.g., points #A on the side 1–2, are the average of
those at two related field nodes on the side: points #1 and #2.
With conditions (v) and (vi), a linear compatible displacement field
along the boundary C(k) of the cell X(k) associated with the node k
is constructed.

With such novel and simple element-based point interpolation
technique, any shape function satisfying the six above conditions
can be used in the NS-FEM. It should be mentioned that the pur-
pose of introducing the central points and midpoints of sides is
to facilitate the evaluation of the shape function at the Gauss
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points and to ensure the linear compatible property along the
edges of the cell connecting the central point and midpoints of
sides. No extra degrees of freedom are associated with these
points. In other words, these points carry no additional field vari-
able. This means that the nodal unknowns in the NS-FEM are the
same as those in the FEM of the same mesh. The solutions of the
unknowns of the NS-FEM and FEM are different.

It is easy to see that the bilinear and linear shape functions for
4-node quadrilateral and triangular elements of the standard FEM
satisfy naturally the six above conditions. Hence, the NS-FEM can
be applied easily to traditional 4-node quadrilateral or triangular
elements without any modification.

Different from the standard isoparametric finite elements, the
NS-FEM obtains shape functions without using coordinate trans-
formation or mapping. Hence the field domain can be discretized
in a much more flexible way, and even severely distorted elements
can be used, as will be shown in the numerical examples. The sim-
ilar element-based interpolation technique was proposed for SFEM
by Dai et al. [18].
4.5

5

5. Upper bound property of the NS-FEM

Property 2. The numerical results demonstrated that when a
reasonably fine mesh is used, the strain energy of numerical solution
ENS-FEM(d) obtained from the NS-FEM solution has the following
relationship with the total strain energy of exact solution Eexact:

ENS-FEMðdÞP Eexact; ð31Þ

where

ENS-FEM ¼
1
2

dTKNS-FEMd; ð32Þ

Eexact ¼
1
2

lim
Ne!1

XNe

i¼1

Z
Xi

eT
i Dei dX: ð33Þ

A proof procedure and arguments that shows the same prop-
erty, Eq. (31), of the LC-PIM can be found in Ref. [11]. In this paper,
we focus on the phenomenon from the numerical results rather
than the theoretical examination of the phenomenon. An intuitive
explanation on why the NS-FEM can always produce upper bound
solution may be given as follows. The FEM model underestimates
the strain energy by approximating the continuous exact strain
field by a piecewise-constant strain field over the elements
(consistency reduced a little within the elements), while the
NS-FEM model overestimates the strain energy by approximating
the discontinuous FEM strain field by a piecewise-constant strain
field over the node-based smoothing cells (consistency increased
a lot within the cells). Therefore, the overestimation will be larger
than the underestimation, as long as the mesh used is reasonably
fine.
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Fig. 3. Voronoi diagram.
6. Numerical implementation

6.1. Domain discretization with polygonal elements of the Voronoi
diagram

The procedure to discretize a problem domain using polygonal
elements of the Voronoi diagram can be described as follows [26].

The problem domain and its boundaries are first discretized by
a set of properly scattered points P :¼ {p1,p2, . . . ,pn}. Based on the
given points, the domain is further decomposed into the same
number of Voronoi cells C :¼ {C1,C2, . . . ,Cn} according to the near-
est-neighbour rule defined by

Ci ¼ x 2 R2 : dðx;xiÞ < dðx;xjÞ 8j–i
� �

8i: ð34Þ
The shape of these Voronoi cells is generally irregular but
they are convex polygons as shown in Fig. 3. The initial point
pi is regarded as the representative point of the ith element.
Once we get the information of these Voronoi diagrams, a set
of polygonal elements is then formed for our numerical
analysis.

The following points need to be noted: (i) the original dis-
crete points P only serve as numerical devices for domain
decomposition and do not function in following numerical anal-
ysis; (ii) if we prefer more regular elements, such as rectangular
elements, hexagon elements, we need to arrange a special point
pattern P before the generation of Voronoi diagrams; (iii) for
demonstration purpose, we arrange the initial points in an arbi-
trary form in the following numerical examples regardless of
the issue of computational cost. As a result, the number of
elements sides is generally changing from element to element;
(iv) the NS-FEM does not require the elements to be convex
(see Section 7.1); (v) triangular and quadrilateral elements used
in the FEM can be used directly in the NS-FEM without any
alterations.

6.2. Procedure of the NS-FEM

The numerical procedure for the NS-FEM is briefly as follows:

1. Divide the domain into a set of elements and obtain information
on nodes coordinates and element connectivity.

2. Determine the area of cells X(k) associated with nodes k and
find neighbouring cells of each node.

3. Loop over all the nodes:
(a) Determine the node connecting information of cell X(k)

associated with node k;
(b) Determine the outward unit normal of each boundary

side for cell X(k);
(c) Compute the matrix eBIðxkÞ using Eq. (13);
(d) Evaluate the stiffness matrix using Eq. (21) and force vec-

tor of the current cell;
(e) Assemble the contribution of the current cell to form

the system stiffness matrix using Eq. (20) and force
vector;
4. Implement essential boundary conditions.
5. Solve the system equations to obtain the nodal displacements.
6. Evaluate strains and stresses at nodes of interest.
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Fig. 4. Domain discretization of a square patch using 36 n-sided polygonal
elements.
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6.3. Rank test for the stiffness matrix

Property 3. The NS-FEM possesses only ‘‘legal” zero-energy modes
that represents the rigid motions, and there exists no spurious zero-
energy mode.

It is known that from the work on the elemental SFEM [8] that
an elemental SFEM model can have spurious zero-energy modes
when the entire element is used as a smoothing cell. This is be-
cause ‘‘sampling” smoothing cells are insufficient. In the present
node-based SFEM, however, we found that the NS-FEM possesses
only ‘‘legal” zero-energy modes that represents the rigid motions,
and there exists no spurious zero-energy mode. This is ensured
by the following key reasons:

(i) The numerical integration used to evaluate Eq. (28) in the
NS-FEM satisfies the necessary condition given in Section
6.1.3 in Ref. [27]. This is true for all possible NS-FEM models,
as detailed in Table 1.

(ii) The nodal strain smoothing operation ensures linearly inde-
pendent columns (or rows) in the stiffness matrix.

(iii) The shape functions used in the NS-FEM are of partition of
unity.Therefore, no deformed zero-energy mode will appear
in the NS-FEM. In other words, any deformation (except the
rigid motions) will result in strain energy in an NS-FEM
model.
Table 1
Existence of spurious zero-energy modes in an element

Type of
element

Nodal-SFEM FEM with reduced integration

Triangle nQ = 3, NQ = 3 � nQ = 9 nQ = 1, NQ = 3 � nQ = 3
NR = 3 nt = 3, Nu = 2 � nt = 6 nt = 3, Nu = 2 � nt = 6

NQ > Nu � NR NQ = Nu � NR

) Spurious zero-energy modes
not possible

) Spurious zero-energy modes
not possible

Quadrilateral nQ = 4, NQ = 3 � nQ = 12 nQ = 1, NQ = 3 � nQ = 3
NR = 3 nt = 4, Nu = 2 � nt = 8 nt = 4, Nu = 2 � nt = 8

NQ > Nu � NR NQ < Nu � NR

) Spurious zero-energy modes
not possible

) Spurious zero-energy modes
possible
Not applicable

(n > 4) nt = n, Nu = 2 � nt = 2n
n-Sided

polygonal
nQ = n, NQ = 3 � nQ = 3n

NR = 3 NQ > Nu � NR

) Spurious zero-energy modes
not possible

Note: NR: number of DOFs of rigid motion.
nQ: number of quadrature points/cells.
NQ: number of independent equations.
nt: number of nodes.
Nu: number of total DOFs.
6.4. Standard patch test

Satisfaction of the standard patch test requires that the dis-
placements of all the interior nodes follow ‘‘exactly” (to machine
precision) the same linear function of the imposed displacement.
A domain discretization of a square patch using 36 n-sided polyg-
onal elements is shown in Fig. 4. The following error norm in dis-
placements is used to examine the computed results:

ed ¼
Pndof

i¼1 jui � uh
i jPndof

i¼1 juij
� 100%; ð35Þ

where ui is the exact solution, uh
i is the numerical solution and ndof

is the number of degrees of freedom of the system.
The parameters are taken as E = 100, m = 0.3 and the linear dis-

placement field is given by

u ¼ x;

v ¼ y:
ð36Þ

It is found that the NS-FEM can pass the standard patch test
within machine precision with the error norm in displacements:
ed = 5.22e�13 (%).

7. Numerical examples

In this section, some examples will be analyzed to demonstrate
the properties of the present method. Three kinds of element are
used: n-sided polygonal, 4-node quadrilateral and triangular
elements. To emphasize the upper bound property of strain energy
of the NS-FEM, the results of n-sided polygonal elements of
the present method (NS-FEM) will be compared with those of the
elemental SFEM with n-sided polygonal (SFEM) [18], while the
results of 4-node quadrilateral (NS-FEM-Q4) and triangular
elements (NS-FEM-T3) of the present method will be compared
with those of the standard displacement FEM (FEM-Q4 and
FEM-T3). The error norm of displacement is given in Eq. (35).

7.1. Cantilever loaded at the end

A cantilever with length L and height D is studied as a bench-
mark here, which is subjected to a parabolic traction at the free
end as shown in Fig. 5. The cantilever is assumed to have a uniform
unit thickness so that plane stress condition is valid. The analytical
solution is available and can be found in a textbook by Timoshenko
and Goodier [28]:
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Fig. 5. Cantilever loaded at the end.
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Fig. 7. Domain discretization of the cantilever using 4-node quadrilateral elements.
(a) Regular elements; (b) extremely irregular elements (air = 0.5).

Fig. 8. Domain discretization of the cantilever using triangular elements.
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ux ¼
Py
6EI

ð6L� 3xÞxþ ð2þ mÞ y2 � D2

4

 !" #
;

uy ¼ �
P

6EI
3my2ðL� xÞ þ ð4þ 5mÞD

2x
4
þ ð3L� xÞx2

" #
;

ð37Þ

where the moment of inertia I for a beam with rectangular cross
section and unit thickness is given by I ¼ D3

12.
The stresses corresponding to the displacements Eq. (37) are

rxxðx; yÞ ¼
PðL� xÞy

I
; ryyðx; yÞ ¼ 0; sxyðx; yÞ ¼ �

P
2I

D2

4
� y2

 !
:

ð38Þ

The related parameters are taken as E = 3.0 � 107 kPa, m = 0.3,
D = 12 m, L = 48 m and P = 1000 N. In the computations, the nodes
on the left boundary are constrained using the exact displacements
obtained from Eq. (37) and the loading on the right boundary uses
the distributed parabolic shear stresses in Eq. (38).

The domain discretizations for three different elements: n-sided
polygonal, quadrilateral and triangular elements are shown in Figs.
6–8, respectively. For the quadrilateral elements, to investigate the
effect of the shape of the element when the severe distorted
elements can be used, two types of discretization are used, as
shown in Fig. 7: one with regular elements and the other with
irregular interior nodes whose coordinates are generated in the
following fashion:

x0 ¼ xþ Dx � rc � air;

y0 ¼ yþ Dy � rc � air ;
ð39Þ

where Dx and Dy are initial regular element sizes in x- and y-direc-
tions, respectively. rc is a computer-generated random number
between �1.0 and 1.0 and air is a prescribed irregularity factor
whose value is chosen between 0.0 and 0.5. The bigger the value
of air, the more irregular the shape of generated elements in the
patch.

The numerical strain energies have been plotted against the
number of nodes in Fig. 9. It can be seen that the NS-FEM,
NS-FEM-Q4 and NS-FEM-T3 possess the upper bound property
on the strain energy, i.e., the strain energies of NS-FEM, NS-FEM-
Q4 and NS-FEM-T3 are always bigger than the exact one and
converge to it with the increase of nodes. In the contrast, the SFEM,
FEM-Q4 and FEM-T3 possess the lower bound property on the
strain energy. These results imply a very simple procedure to
Fig. 6. Domain discretization of the cantilever using n-sided polygonal elements.
determine an upper bound of the global error by using the NS-
FEM together the SFEM or the FEM.

Fig. 10 shows the strain energy and the error norm in displace-
ment against degree of nodal irregularity air for the 4-node quad-
rilateral elements. The same analysis is still used but with
distorted elements created by irregular nodes. The degree of nodal
irregularity air is chosen between 0.0 (regular mesh) and 0.5. The
results show that when the shape of element becomes distorted
(air = 0.1–0.3), the accuracy of the FEM decreases gradually, while
the accuracy of the NS-FEM still keeps stable. And when the shape
of element is severe distorted (air > 0.3), the FEM fails to work due
to the negative determinant of Jacobian matrix, while the NS-FEM
still works well and stably.

7.2. Infinite plate with a circular hole

Fig. 11 represents a plate with a central circular hole of radius
a = 1 m, subjected to a unidirectional tensile load of r = 1.0 N/m2

at infinity in the x-direction. Due to its symmetry, only the upper
right quadrant of the plate is modeled. Plane strain condition is
considered and E = 1.0 � 103 N/m2, m = 0.3. Symmetric conditions
are imposed on the left and bottom edges, and the inner boundary
of the hole is traction free. The exact solution for the stress is [28]

r11 ¼ 1� a2

r2

3
2

cos 2hþ cos 4h

� �
þ 3a4

2r4 cos 4h;

r22 ¼ �
a2

r2

1
2

cos 2h� cos 4h

� �
� 3a4

2r4 cos 4h;

s12 ¼ �
a2

r2

1
2

sin 2hþ sin 4h

� �
þ 3a4

2r4 sin 4h;

ð40Þ
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Fig. 9. Strain energy for the cantilever problem. (a) n-Sided polygonal elements; (b) triangular and 4-node elements.

0 0.1 0.2 0.3 0.4 0.5
4.25

4.3

4.35

4.4

4.45

4.5

4.55

4.6

α
ir

st
ra

in
 e

ne
rg

y

FEM−Q4 (mesh 24x6)
FEM−Q4 (mesh 40x10)
NS−FEM−Q4 (mesh 24x6)
NS−FEM−Q4 (mesh 40x10)
exact strain energy

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

α
ir

di
sp

la
ce

m
en

t e
rr

or
 n

or
m

 (
%

)

FEM−Q4 (mesh 24x6)
FEM−Q4 (mesh 40x10)
NS−FEM−Q4 (mesh 24x6)
NS−FEM−Q4 (mesh 40x10)

a b

Fig. 10. (a) Strain energy; (b) displacement error norm of the cantilever problem using irregular meshes.

Fig. 11. Infinite plate with a circular hole and its quarter model.
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Fig. 12. Domain discretization of the infinite plate with a circular hole using n-
sided polygonal elements.
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where (r,h) are the polar coordinates and h is measured counter-
clockwise from the positive x-axis. Traction boundary conditions
are imposed on the right (x = 5.0) and top (y = 5.0) edges based on
the exact solution Eq. (40). The displacement components corre-
sponding to the stresses are

u1¼
a

8l
r
a
ðjþ1Þcoshþ2

a
r
ðð1þjÞcoshþcos3hÞ�2

a3

r3 cos3h

� �
;

u2¼
a

8l
r
a
ðj�1Þsinhþ2

a
r
ðð1�jÞsinhþsin3hÞ�2

a3

r3 sin3h

� �
;

ð41Þ
where l = E/(2(1 + m)), j is defined in terms of Poisson’s ratio by
j = 3 � 4m for plane strain cases.

Figs. 12 and 13 give the discretization of the domain using n-
sided polygonal, 4-node quadrilateral and triangular elements,
respectively.
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Fig. 13. Domain discretization of the infinite plate with a circular hole using triangular and 4-node quadrilateral elements.
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Fig. 14. Strain energy for the infinite plate with a circular hole. (a) n-Sided polygonal elements; (b) triangular and 4-node elements.
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Fig. 14 again shows the upper bound property on the strain en-
ergy of the NS-FEM, NS-FEM-Q4 and NS-FEM-T3, while the SFEM,
FEM-Q4 and FEM-T3 always keep the lower bound property.

From Figs. 15 and 16, it is observed that all the computed dis-
placements and stresses of the NS-FEM using two discretizations
with n-sided polygonal elements are in good agreement with the
analytical solutions. With the refinement of the mesh, the accuracy
is getting better.
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Fig. 15. Computed and exact displacements of the infinite plate with a circular hole. (a)
side.
Fig. 17 plots the displacement error norm versus different
Poisson’s ratios for n-sided polygonal elements (579 nodes) and
for 4-node quadrilateral elements (mesh 16 � 16). The results
show that the NS-FEM and NS-FEM-Q4 avoids the volumetric
locking naturally, while the SFEM and FEM-Q4 are subjected to
the volumetric locking. From this point, we have the next prop-
erty of the NS-FEM:
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Fig. 16. Computed and exact stresses of the infinite plate with a circular hole. (a) Stress ry of nodes along bottom side; (b) stress rx of nodes along left side.
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Fig. 17. Displacement error norm with different Poisson’s ratios. (a) n-Sided polygonal elements (579 nodes); (b) 4-node quadrilateral elements.
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Property 4. The NS-FEM is immune from the volumetric locking.
0

7.3. Semi-infinite plate

The semi-infinite plate shown in Fig. 18 is studied subjected to a
uniform pressure within a finite range (�a 6 x 6 a). The plane
strain condition is considered. The analytical stresses are given
by [28]
Fig. 18. Semi-infinite plate subjected to a uniform pressure.
r11 ¼
p

2p
2ðh1 � h2Þ � sin 2h1 þ sin 2h2½ �;

r22 ¼
p

2p
2ðh1 � h2Þ þ sin 2h1 � sin 2h2½ �;

s12 ¼
p

2p cos 2h1 � cos 2h2½ �:

ð42Þ
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Fig. 19. Domain discretization of the semi-infinite plate using n-sided polygonal
elements.
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The directions of h1 and h2 are indicated in Fig. 18. The corre-
sponding displacements can be expressed as

u1¼
pð1�m2Þ

pE
1�2m
1�m

ðxþaÞh1�ðx�aÞh2½ �þ2y ln
r1

r2

� �
;

u2¼
pð1�m2Þ

pE
1�2m
1�m

yðh1�h2Þþ2Harctan
1
c

� ��
þ2ðx�aÞ lnr2�2ðxþaÞ lnr1þ4a lnaþ2a lnð1þc2Þ

�
;

ð43Þ
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Fig. 21. Strain energy for the semi-infinite plate problem. (a) n-Si

0 0.2 0.4 0.6 0.8 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Fig. 20. Domain discretization of the semi-infinite

0.4 0.49 0.499 0.4999 0.49999 0.499999 0.4999999
0

2

4

6

8

10

12

Poisson’s ratio

di
sp

la
ce

m
en

t e
rr

or
 n

or
m

 (
%

)

SFEM (1393 nodes)
NS−FEM (1393 nodes)

a

Fig. 22. Displacement error norm with different Poisson’s ratios. (a)
where H = ca is the distance from the origin to point O0, the
vertical displacement is assumed to be zero and c is a
coefficient.

Due to the symmetry about the y-axis, the problem is modeled
with a 5a � 5a square with a = 0.2 m, c = 100 and p = 1 MPa.
The left and bottom sides are constrained using the exact displace-
ments given by Eq. (43) while the right side is subjected to
tractions computed from Eq. (42). Figs. 19 and 20 give the discret-
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Fig. 23. Crack problem and half of the domain modeled.
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ization of the domain using n-sided polygonal, 4-node quadrilat-
eral and triangular elements, respectively.

Again, Fig. 21 shows the upper bound property on the strain
energy of the NS-FEM, NS-FEM-Q4 and NS-FEM-T3, and the lower
bound property of the SFEM, FEM-Q4 and FEM-T3. Fig. 22 verifies
the immune property from the volumetric locking of the NS-FEM
and NS-FEM-Q4.

7.4. Crack problem in linear elasticity

Consider a crack problem in linear elasticity as shown in Fig. 23.
Data of the structure are E = 1.0 N/m2, m = 0.3, t = 1 m. Due to the
symmetry about the y-axis, only half of domain is modeled. One
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Fig. 24. Discretization of the crack problem using n-sided polygonal elements.
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Fig. 25. Strain energy for the crack problem. (a) n-Sided po
domain discretization using n-sided polygonal elements is shown
in Fig. 24. By incorporating the dual analysis [13] and the proce-
dure of Richardson’s extrapolation with very fine meshes, Beckers
et al. [29] proposed a good approximation of the exact strain
energy to be 8085.7610.

Note that, the solution of the crack problem includes the strong
singularity (namely a r�1/2 in stress) at the crack tip. In the present
study, we only estimate the results based on the global strain
energy of entire domain. Hence discontinuity fields such as dis-
placements and stresses along crack path should be further
considered by incorporating the present method into the extended
finite element method (XFEM) [30] which has been recently
proved to be advantageous to solve crack problems.

Again, Fig. 25 confirms the upper bound property on the strain
energy of the NS-FEM, NS-FEM-Q4 and NS-FEM-T3 and the lower
bound property of the SFEM, FEM-Q4 and FEM-T3.

8. Conclusion

In this work, a node-based smoothed finite element method
(NS-FEM) for upper bound solutions to solid mechanics problems
is proposed. Through numerical results, some conclusions can be
drawn as follows:

� The NS-FEM allows the use of polygonal elements with an arbi-
trary number of sides. The method can be applied easily to tra-
ditional 4-node quadrilateral or triangular elements without any
modification.

� In the case of homogeneous essential boundary conditions,
when a reasonably fine mesh is used, the NS-FEM possesses
the upper bound property of the strain energy. A simple and
practical procedure is proposed to determine both upper and
lower bounds in the strain energy, by combining the NS-FEM
with the SFEM (for n-sided polygonal elements) or with the
FEM (for triangular or 4-node quadrilateral elements).
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� The NS-FEM is immune from the volumetric locking.
� In the NS-FEM, field gradients are computed directly only using

shape functions themselves at some particular points along seg-
ments of boundary of the cells and no explicit analytical form is
required. The values of shape functions for the discrete points of
an n-sided polygonal element are defined in a trivial and simple
manner.

� Unlike the conventional FEM using isoparametric elements, as
no coordinate transformation or mapping is performed in the
NS-FEM, no limitation is imposed on the shape of elements used
herein. Even severely distorted elements are allowed. Domain
discretization is more flexible than FEM.
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