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It is well-known that one key issue of solving the Helmholtz equation using finite element method (FEM)
is the accuracy deterioration in the solution with increasing wave number due to the ‘‘numerical disper-
sion error”. Such a numerical dispersion error is essentially caused by the ‘‘overly-stiff” nature of the FEM
model. To overcome this problem, this paper presents an edge-based smoothed finite element method
(ES-FEM) for analyzing acoustic problems using linear triangular and tetrahedron elements that can be
generated automatically, respectively, for complicated two-dimensional and three-dimensional domains.
The discretized linear system equations for ES-FEM are established using the smoothed Galerkin weak
form with smoothing domains associated with the edges of the triangles or surfaces of the tetrahedrons.
The edge-based gradient smoothing operation provides proper softening effect, makes the ES-FEM model
much softer than the ‘‘overly-stiff” FEM model and hence significantly reduces the numerical dispersion
error. Numerical examples, including a 2D problem of acoustic pressure distribution in a vehicle passen-
ger compartment and a 3D problem about the acoustic pressure distribution in an engine chamber, have
been studied using the present ES-FEM. The results demonstrate that the ES-FEM possesses the following
advantages compared with the standard FEM using the same meshes. First, ES-FEM achieves similar con-
vergence rate but better accuracy especially at high frequency. Second, ES-FEM is less sensitive to the
mesh distortion, meaning that the quality of mesh has less effect on the solution of ES-FEM. Third, it
works well for triangular types of meshes, and thus for the problems with complicated geometry.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

During the past several decades, many numerical methods have
been introduced to compute the approximate solutions of acoustic,
aeroacoustic and structural-acoustic problems [1–4,27–29]. The
standard finite element method (FEM) and boundary element
method (BEM) are the most well-developed and widely-used
numerical methods in solving these acoustic problems. A well-
known issue of solving acoustic problems governed by the
Helmholtz equation with numerical methods including FEM is
the so-called ‘‘numerical dispersion” errors, i.e. error on the phase
of the numerically simulated waves [1], in addition to the usual
‘‘interpolation error”. In the low frequency range, the numerical
methods can provide appropriate results; in the higher frequency
range, the numerical dispersion error can not be negligible any
more unless a sufficiently (beyond the usual rule-of-thumb) fine
ll rights reserved.

.
e).
mesh is used. However, such an extra fine mesh will lead to a dra-
matic increase of computational cost, especially for large scale 3D
acoustic problems.

In order to overcome the problem of numerical dispersion error,
various techniques have been proposed to tackle the numerical
pollution of FEM. Reference [3] showed that the high-order ele-
ments and the QSFEM (Quasi Stabilized FEM) are effective in low-
ering the dispersion error, but the QSFEM is very complicated in
the general setting. Petersen et al. [4] assessed the efficiency of cur-
rently available shape function families, such as the conventional
Lagrange functions, various p-FEM shapes, and spectral element
shape functions. It showed that the higher-order polynomial shape
approximations lead to more accurate solutions and Bernstein
polynomials provide the most efficient and stable solution. An-
other approach is the Galerkin/least-squares finite element meth-
od (GLS) [5] with a stabilization term for Helmholtz equations.
The same idea has been applied in aeroacoustics with algebraic
subgrid scale (ASGS) approach for the convected Helmholtz equa-
tion [6]. In recent years, meshfree methods have been developed
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and applied to many engineering problems. The element-free
Galerkin method (EFGM), introduced by Belytschko et al. [7], has
also been adopted to solve acoustic problems. Bouillard [8] showed
that the EFGM is also affected by the dispersion and pollution phe-
nomena, but these effects are relatively low compared to FEM.
Alvarez et al. [9] used discontinuous finite element formulation
for acoustic problems and found significant improvement in accu-
racy, but higher cost in computation. However, it is the authors’
opinion that producing a properly ‘‘softened” stiffness for the dis-
crete model is much more essential to the root of the numerical
dispersion error.

Recently, strain smoothing techniques have been applied by
Chen et al. [10] to stabilize the solutions of nodal integrated mesh-
free methods and also in the natural-element method [11]. A line-
arly conforming point interpolation method (LC-PIM) has been
formulated by using the node-based strain smoothing domains
and the point interpolation method (PIM) for field variable approx-
imation [12]. The PIM shape functions are constructed based on a
small set of nodes in a local support domain and possess the Delta
function property, which allows straightforward imposition of
essential boundary conditions [13]. Because of the incompatible
nature of the PIM shape functions, a generalization to the smooth-
ing operation is needed [14]. Instead of using compatible strains
obtained from the strain–displacement relation, LC-PIM uses the
generalized smoothing technique to construct the strain field over
node-based smoothing domains, ensuring the stability and conver-
gence, providing softening effect to the model and significantly
improving the accuracy. More importantly, it has been found that
LC-PIM can provide upper bound solution in energy norm for elas-
ticity problems with homogeneous essential boundary conditions
[15].

Because the node-based domains are used, LC-PIM is also
termed as node-based smoothed point interpolation method (or
NS-PIM). Applying the strain smoothing technique to the finite ele-
ment setting, the node-based smoothed finite element method
(NS-FEM) has also been formulated and applied to triangular,
4-node quadrilateral and n-sided polygonal elements [16]. When
3-node triangular elements are used, the NS-FEM is identical to
the NS-PIM using linear PIM shape functions and hence also pos-
sesses the upper bound property [16]. However, NS-PIM and NS-
FEM models behave ‘‘overly-soft” leading to temporal instability
problems observed as spurious non-zero energy modes in vibra-
tion analysis [14,17]. Techniques such as the alpha finite element
method (aFEM) are needed to eliminate this instability issue
[19]. The edge-based smoothed finite element method (ES-FEM)
and the edge-based smoothed point interpolation method (ES-
PIM) have therefore been proposed with the strain smoothing
operated over the edge-based smoothing domains in FEM and
meshfree settings [17,18]. In one-dimensional (1D) problems, the
ES-FEM is the same as NS-FEM encountering instability problems.
While in two-dimensional (2D) problems, the ES-FEM is found to
be stable (no spurious non-zero energy modes), exhibits neither
‘‘overly-stiff” nor ‘‘overly-soft” behaviors and can hence achieve
much more accurate results [14,17]. The similar features are also
found in the 3D version of ES-FEM, i.e. the face-based smoothed
FEM or FS-FEM [20], and the plate formulation [21].

Owning to the properly softened stiffness of the model, it is nat-
ural to expect that the ES-FEM will greatly reduce the numerical
dispersion error and obtain accurate results for acoustic problems.
We, therefore, further formulate the ES-FEM for solving acoustic
problems in both 2D and 3D domains in the present work. The
smoothed Galerkin weak form is used to derive the discretized lin-
ear system equations; the numerical integration and gradient
smoothing operation are applied over the edge/face-based smooth-
ing domains. A number of numerical examples have been studied,
which include two problems with analytical solutions, a 2D practi-
cal problem of a vehicle passenger compartment and a 3D problem
of acoustic pressure distribution in an engine chamber. All the
numerical results show that the present method is stable and
can provide more accurate results compared with the standard
FEM using the same mesh.

The paper is organized as follows: Section 2 briefly describes
the mathematical model. Section 3 introduces the detailed formu-
lation of the edge-based smoothed finite element method for
acoustic problems. Section 4 outlines the issue of controlling the
numerical dispersion error. In Section 5, a number of examples
are studied in detail. Finally, the conclusions from the numerical
results are presented in Section 6.
2. Mathematical model of acoustic problems

Consider an acoustic problem domain X with boundary C and
the boundary is decomposed into three portions CD;CN and CA,
which C ¼ CD [ CN [ CA. The Dirichlet, Neumann and admittance
(Robin) boundary conditions are prescribed on CD;CN and CA,
respectively. Let p0 denote the field acoustic pressure and c is the
speed of sound traveling in the fluid. The acoustic wave equation
can be written as follows:

Dp0 � 1
c2

@2p0

@t2 ¼ 0 in X; ð1Þ

where D and t denote the Laplace operator and time, respectively.
Here we assume that the acoustic pressure p0 is a small harmonic
perturbation around a steady state in the fluid. The acoustic pres-
sure can then be expressed as:

p0 ¼ pejxt ; ð2Þ

where j ¼
ffiffiffiffiffiffiffi
�1
p

;x is the angular frequency and the p is the ampli-
tude of the acoustic wave. In general, the acoustic pressure p is
complex-valued in the frequency domain, and satisfies the Helm-
holtz equation given by:

Dpþ k2p ¼ 0; ð3Þ

where k is the wave number defined by

k ¼ x
c
: ð4Þ

The Dirichlet, Neumann and admittance (Robin) boundary condi-
tions on CD;CN and CA can be described as follows:

p ¼ pD CD Dirichlet condition; ð5Þ
v ¼ vn or rp � n ¼ �jqxvn CN Neumann condition; ð6Þ
v ¼ Anp or rp � n ¼ �jqxAnp CA Robin condition; ð7Þ

where vn;q and An represent the normal velocity on the boundary
CN , the density of medium and the admittance coefficient on
boundary CA, respectively.

The acoustic particle velocity v in ideal fluid is linked to the gra-
dient of acoustic pressure p by the equation of harmonic motion
which can be expressed:

rpþ jqxv ¼ 0: ð8Þ
3. Formulation of the ES-FEM

3.1. Discretized system equations

We first brief the standard weak formulation for acoustic prob-
lems. The weighted residual equation is first obtained by multiply-
ing Eq. (1) with a test function w in the entire domain and can be
written as:
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Z
X

wðDpþ k2pÞdX ¼ 0: ð9Þ

Integrating by parts and using Green’s theorem, we have

�
Z

X
rw � rpdXþ k2

Z
X

w � pdXþ
Z

C
wðrp � nÞdC ¼ 0: ð10Þ

Applying the boundary conditions shown in Eqs. (5)–(7), we obtain

�
Z

X
rw � rpdXþ k2

Z
X

w � pdX� jqx
Z

CN

w � vndC

� jqxAn

Z
CA

w � pdC ¼ 0: ð11Þ

In the above weighted residual form, the field variable pressure can
be expressed in the approximate form:

p ¼
Xm

i¼1

Nipi ¼ Np; ð12Þ

where Ni are FEM shape functions and pi is the unknown nodal
pressure. In standard Galerkin weak form the shape function N is
also used as the weight function w and the weak form for acoustic
problem can be obtained as:

�
Z

X
rN � rNPdXþ k2

Z
X

N �NPdX� jqx
Z

CN

N � vndC

� jqxAn

Z
CA

N � NPdC ¼ 0: ð13Þ

Introducing the gradient smoothing technique based on edges
of elements [17] or faces of elements [19], the gradient component
rN is replaced by the smoothed item rN, the smoothed Galerkin
weak form for acoustic problem can be written as:

�
Z

X
rN � rNPdXþ k2

Z
X

N �NPdX� jqx
Z

CN

N � vndC

� jqxAn

Z
CA

N � NPdC ¼ 0: ð14Þ

The discretized system equations can be finally obtained and
written in the following matrix form:

½K� k2Mþ jqxC�fPg ¼ �jqxfFg; ð15Þ

where

K ¼
Z

X
ðrNÞTrNdX The acoustical stiffness matrix; ð16Þ

M ¼
Z

X
NTNdX The acoustical mass matrix; ð17Þ

C ¼
Z

CA

NTNAndC The acoustical damping matrix; ð18Þ

F ¼
Z

CN

NTvndC The vector of nodal acoustic forces; ð19Þ

fPgT ¼ fp1; p2; . . . ;png Nodal acoustic pressure in the domain:
ð20Þ

To obtain Eq. (16), the numerical integration procedure is per-
formed based on the smoothing domains associated with the edges
of the triangles in 2D [17] or surfaces of tetrahedrons in 3D [19].
3.2. Numerical integration with edge-based gradient smoothing
operation

This section formulates the gradient smoothing domains of ES-
FEM for 2D and 3D problems using triangular elements and tetra-
hedral elements, respectively. The formulation is almost the same
for any other 2D and 3D n-side polygonal elements as long as the
simple point interpolation method is used to create shape func-
tions [23].

In the process of numerical integration of ES-FEM for 2D prob-
lems, a mesh of 3-node triangles is generated first, which can be
done easily and automatically using any mesh generator. After-
wards, the problem domain X is further divided into N smoothing
domains associated with edges of the triangles such that
X1 [X2[; . . . ;XN ¼ X and Xi \Xj ¼ Ø; i – j, where N is the number
of total edges of triangles. As shown in Fig. 1a, the smoothing
domain Xk for edge k is created by connecting sequentially the
end-points of edge k to the centroids of the neighbor triangles.
Extending the smoothing domain Xk in 3D problems, the domain
discretization is the same as that of standard FEM using tetrahedral
elements and the smoothing domains are formed associated with
the faces of tetrahedrons. As shown in Fig. 1b, the smoothing
domain Xk for face k is created using the neighbor tetrahedral ele-
ments by connecting vertexes of the triangle (face k) to the cen-
troids of two adjacent elements. The boundary of the smoothing
domain Xk for edge k (or face k) is labeled as Ck and the union of
all Xk form the global domain X exactly. To perform the numerical
integration based on the smoothing domains, Eq. (16) can be fur-
ther rewritten as:

K ¼
XN

k¼1

KðkÞ; ð21Þ

in which

KðkÞ ¼
Z

Xk

BT BdX: ð22Þ

In the present method, smoothing operation is applied over
each smoothing domain on the velocity v, which is linked to the
gradient of acoustic pressure. The smoothed velocity can be ob-
tained as:

�vðxkÞ ¼
Z

Xk

vðxkÞWðx� xkÞdX; ð23Þ

where W is a smoothing function given by

Wðx� xkÞ ¼
1=Vk x 2 Xk;

0 x R Xk;

�
ð24Þ

where Vk ¼
R

Xk
dX is the area of smoothing domain for edge k in 2D

problems. When it comes to 3D problems, the Vk is the volume of
smoothing domain for face k.

Substituting Eq. (24) into Eq. (23) and applying the Green’s the-
orem, the smoothed field gradient (the smoothed velocity) can be
obtained in terms of acoustic pressure:

�vðxkÞ ¼
1

Vk

Z
Xk

vðxÞdX ¼ � 1
jqxVk

Z
Xk

rpdX

¼ � 1
jqxVk

Z
Ck

p � ndC: ð25Þ

Using FEM shape function for field variable interpolation in the
form of Eq. (12), the smoothed velocity for edge k can be written
in the following matrix form.

�vðxkÞ ¼ �
1

jqx
X
I2Mk

BiðxkÞpi; ð26Þ

where Mk is the total number of nodes in the influence domain of
edge k. For two-dimensional space

BT
i ðxkÞ ¼ ½�bi1

�bi2� ðfor 2D problemÞ; ð27Þ

bip ¼
1

Vk

Z
Ck

NiðxÞnpðxÞdC ðp ¼ 1;2; for 2D problemÞ; ð28Þ



kΩ
kΓ
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(a) Edge-based smoothing domains in 2D problem for gradient smoothing and integration are 

created by sequentially connecting the centroids of the adjacent triangles with the end-points of the 

edge.

Centroid of tetrahedron 
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(b) For 3D problems, the smoothing domain is created using the neighbor tetrahedral elements by 

connecting vertexes of the triangle (face k) to the centroids of two adjacent elements. 

Fig. 1. Illustration of construction of smoothing domain for 2D and 3D problems.

Z.C. He et al. / Comput. Methods Appl. Mech. Engrg. 199 (2009) 20–33 23
and for three-dimensional space

BT
i ðxkÞ ¼ ½�bi1

�bi2
�bi3� ðfor 3D problemÞ; ð29Þ

�bip ¼
1

Vk

Z
Ck

NiðxÞnpðxÞdC ðp ¼ 1;2;3; for 3D problemÞ; ð30Þ

where Ni is the FEM shape function for node i.
Using Gauss integration along each segment (or each surface

triangle for 3D) of boundary Ck of the smoothing domain Xk, the
above equations can be rewritten in the following summation
forms as

�bip ¼
1

Vk

XNs

q¼1

XNg

r¼1

wrNiðxqrÞnpðxqÞ
" #

; ð31Þ

where Ns is the number of segments of the boundary Ck (or number
of surface triangles of 3D smoothing domain), Ng is the number of
Gauss points distributed in each segment(or each surface triangle),
and wr is the corresponding weight for the Gauss point. The
smoothed stiffness matrix shown in Eq. (22) can be calculated as:

KðkÞ ¼
Z

Xk

BT BdX ¼ BT BVk: ð32Þ

It can be easily seen from Eq. (32) that the resultant linear sys-
tem is symmetric and banded (due to the compact supports of FEM
shape functions), which implies that the system equations can be
solved efficiently.
4. Discretization error

It is well-known that the major concern of computing acoustic
problems using FEM is to control the discretization error. The rea-
son is that the numerical waves of FEM are dispersive, that is, the
wave number of the FEM solution is bound to be different from the
wave number of exact solution [3]. There is so-called ‘‘the rule of
thumb” which provides the minimum number of elements that
are required per wavelength to obtain a stabilized solution to the
Helmholtz equation. However, the error of numerical solutions of-
ten grows with the increase of wave number even if the rule of
thumb is followed.

The gradient of acoustic pressure p is usually used as the global
error indicator for the numerical computation. Based on the rela-
tion between the pressure and velocity described in Eq. (8), the
numerical error indicator in terms of velocity can be expressed by:

e2
n ¼

Z
X
ð~vexact � ~vhÞTðvexact � vhÞdX; ð33Þ

where ~v is complex conjugate of the velocity v, the superscript exact
denotes the exact solutions and h denotes the numerical solutions
obtained from numerical methods including the present ES-FEM
and FEM.

Ihlenburg et al. show that the error can be estimated and the
relative error for a uniform hp-mesh of finite element method is
bounded by [24]:

g ¼ en

ee
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
Xð~vexact � ~vhÞTðvexact � vhÞdXR

Xð~vexact � vexactÞ2dX

vuut

6 C 01
kh
p

� �p

þ C02k
kh
p

� �2p

; ð34Þ

where C01 and C02 are constant independent of the parameters k and
h, and p here is the degree of polynomial approximation used in the
numerical methods. The relative error contains two terms: the first
term is interpolation error which defines the difference between the
interpolation and the exact solution; the second term is generally
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known as numerical dispersion error which relates to the error in the
numerical wave number. For linear interpolation ðp ¼ 1Þ discussed
here, it is shown in Refs. [25,26] that if kh < 1, the relative error
for acoustic problems can be expressed by:

g 6 C1khþ C2k3h2
; ð35Þ

From the expression above, it can be found that the error
strongly depends on the wave number k and mesh size h. The inter-
polation error can be controlled by keeping kh a constant. This is the
‘‘the rule of thumb” which prescribes the relation between the
wave number and mesh size. Even according to the classical rule,
it is not sufficient to control the numerical dispersion error because
it will increase linearly with the increase of k.

In this work, ‘‘the rule of thumb” is also observed by the present
ES-FEM. Compared with the overly-stiff FEM model, the ES-FEM
model with properly softened stiffness will reduce the numerical
dispersion error and hence obtain more accurate solutions. The
numerical results of a number of examples will demonstrate this
point.
5. Numerical examples

In this paper, two examples with analytical solutions, a 2D
problem of a car passenger compartment and a 3D problem of an
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Fig. 2. Exact and numerical solutions of acoustic pressure at dif
engine chamber are studied in detail to investigate the accuracy
and convergence of the ES-FEM. Suppose l is the length of the study
domain, the Cartesian two-dimensional coordinates are character-
ized by two variables x and y, the non-dimensional coordinates are
defined by:

n ¼ x=l; f ¼ y=l: ð36Þ

So the wave number k and mesh size h in the Section 5.1 and 5.2 are
also expressed in a non-dimensional wave number j and size �h

j ¼ kl; �h ¼ h=l: ð37Þ
5.1. 1D problem with Dirichlet boundary condition

Consider a time-harmonic wave propagates in the domain
X ¼ ð0;1Þ with Dirichlet and Neumann boundary conditions de-
scribed as follows:

d2p

dn2 þ j2p ¼ 0 in Xð0 6 n 6 1Þ; ð38Þ

pð0Þ ¼ 1;
dp
dn
ð1Þ ¼ 0: ð39Þ

The problem has an analytical solution as follows:

pðnÞ ¼ cosðjnÞ þ tan j sinðjnÞ: ð40Þ
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ferent frequency values for the 1D time-harmonic problem.
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For simplicity, the density of fluid is 0:004 kg=m3 and the veloc-
ity of the wave is 340 m/s. Three different frequency values
(500 Hz ðj ¼ 9:24Þ, 1000 Hz ðj ¼ 18:48Þ, 1500 Hz ðj ¼ 27:72Þ)
have been employed to study the problem using ES-FEM with
mesh size of 0.03. For the purpose of comparison, FEM solutions
are also computed using the same triangle mesh as well as in the
ES-FEM. The numerical results of acoustic pressure using ES-FEM
and FEM at different frequency values, together with the exact
solutions, are plotted in Fig. 2. It can be seen from these plots that:

1. For the problem at low frequency (small wave number), as
shown in Fig. 2a, ES-FEM and FEM give similar results which
are all in good agreement with the exact solution.

2. With the increase of frequency, the numerical solutions of both
ES-FEM and FEM will depart from the exact one. Compared to
FEM, the ES-FEM can provide much better results, thanks to
the very properly softened stiffness of the model.

The convergence and accuracy property of ES-FEM are then
investigated at 500 Hz ðj ¼ 9:24Þ, 1000 Hz ðj ¼ 18:48Þ and
1500 Hz ðj ¼ 27:72Þ using four types of uniformly distributed
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Fig. 3. Comparison of accuracy and convergence property at different frequency
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Fig. 4. Relative error changing with non-dimensional wave number based on the
same mesh.
nodes (103, 365, 1369, 5297 nodes, respectively). The results ob-
tained from the ES-FEM and FEM in terms of global error are plot-
ted together in Fig. 3. From this figure it can be found that at low
frequency (500 Hz), ES-FEM obtains similar accuracy and conver-
gence rate compared with FEM; with the increase of frequency,
ES-FEM can achieve better accuracy. These results show clearly
that the error of the ES-FEM solution is less sensitive and more sta-
ble than the FEM with respect to the increase of frequency. This
founding is inline with our predictions based on the theorem and
formulation of ES-FEM.

The sensitivity of the relative error against non-dimensional
wave number has also been investigated with constant mesh size
and a comparison of the numerical results between the ES-FEM
and FEM is depicted in Fig. 4. The interpolation error ðj�hÞ and
numerical dispersion error ðj3�h2Þ are called pre-asymptotic
and asymptotic estimate [25], respectively. Cases of the j�h ¼ 1
and j3�h2 ¼ 1 are also presented in Fig. 4. It can be concluded that
the relative errors at low wave numbers obtained from FEM and
ES-FEM are both small. With the increase of non-dimensional wave
number, the relative errors increase dramatically for both methods,
but the relative errors of present ES-FEM are much smaller than
that of FEM solutions. These findings again show that ES-FEM is
less sensitive to non-dimensional wave number than FEM does.

5.2. 2D problem with Neumann boundary condition

Another problem is a 2D tube filled with water as shown in
Fig. 5. The dimension of this tube with length l ¼ 1 m and width
b ¼ 0:1 m is considered. The left of the tube is excited by the har-
monic motion with normal velocity vn ¼ 10 sin xt, the right end of
the tube is rigid wall and the normal velocity v ¼ 0 m=s. The den-
sity of water q is 1000 kg=m3 and the speed of sound in the water
is 1500 m/s. The analytical solutions for this problem can be easily
derived and the pressure and velocity are given by
vn water 

2Γ

Ω
1 

0.1 

x

y

Fig. 5. 1D acoustic chamber with the Neumann boundary condition.
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Table 1
Comparison of the solutions of acoustic pressure along the n-axis with frequency 2000 Hz.

Coordinates [x1,x2] (m) ES-FEM FEM Exact solutions Local error epð%Þ 2000 Hz

ES-FEM FEM

(0.1, 0.0) �5.61E+06 �6.05E+06 �5.35E+06 0.048 0.131
(0.2, 0.0) �1.59E+07 �1.57E+07 �1.58E+07 0.004 0.010
(0.3, 0.0) �1.57E+07 �1.51E+07 �1.58E+07 0.008 0.049
(0.4, 0.0) �5.15E+06 �4.61E+06 �5.35E+06 0.037 0.138
(0.5, 0.0) 8.78E+06 8.84E+06 8.66E+06 0.014 0.021
(0.6, 0.0) 1.69E+07 1.65E+07 1.69E+07 0.001 0.025
(0.7, 0.0) 1.39E+07 1.34E+07 1.40E+07 0.007 0.042
(0.8, 0.0) 1.74E+06 1.56E+06 1.81E+06 0.040 0.141
(0.9, 0.0) �1.16E+07 �1.13E+07 �1.16E+07 0.000 0.023
(1.0, 0.0) �1.72E+07 �1.68E+07 �1.73E+07 0.006 0.030

Table 2
Comparison of the solutions of acoustic pressure along the n-axis with frequency 4000 Hz.

Coordinates [x1,x2] (m) ES-FEM FEM Exact solutions Local error epð%Þ 4000 Hz

ES-FEM FEM

(0.1, 0.0) �1.44E+07 �1.38E+07 �1.40E+07 0.025 0.016
(0.2, 0.0) 1.48E+07 2.44E+07 1.16E+07 0.279 1.104
(0.3, 0.0) 1.17E+07 1.09E+07 1.16E+07 0.008 0.057
(0.4, 0.0) �1.69E+07 �2.57E+07 �1.40E+07 0.209 0.832
(0.5, 0.0) �8.61E+06 �7.91E+06 �8.66E+06 0.006 0.086
(0.6, 0.0) 1.85E+07 2.66E+07 1.58E+07 0.169 0.681
(0.7, 0.0) 5.26E+06 4.79E+06 5.35E+06 0.018 0.105
(0.8, 0.0) �1.94E+07 �2.72E+07 �1.69E+07 0.148 0.603
(0.9, 0.0) �1.73E+06 �1.60E+06 �1.81E+06 0.043 0.114
(1.0, 0.0) 1.95E+07 2.73E+07 1.73E+07 0.125 0.579
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p ¼ �jqcvn
cosðjð1� nÞÞ

sinðjÞ ; ð41Þ

v ¼ vn sinðjð1� nÞÞ
sinðjÞ : ð42Þ

The 2D tube with rigid walls has eigenmodes corresponding to the
values:

f ¼ c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
l

� �2
þ n

b

� �2
r

m ¼ 0;1;2 . . . ; n ¼ 0;1;2 . . . ð43Þ

f here are the eigenfrequencies of this problem, m and n can not be
zero simultaneously. Note that in the vicinity of the above values,
the problem becomes numerically ill-posed, which significantly in-
creases the numerical error.
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Fig. 7. (a) Local relative error in acoustic pressure obtained using the ES-FEM and
the FEM (b) velocity along n-axis (2000 Hz).
5.2.1. Convergence study
The convergence property is investigated by employing four

models with 103, 365, 1369 and 5297 uniformly distributed nodes.
Fig. 6 presents the convergence curves in terms of global error
against the non-dimensional mesh size �h at frequency of 2000 Hz
and 4000 Hz for both ES-FEM and FEM simulations. From these fig-
ures, it can be observed that the present ES-FEM and FEM give sim-
ilar convergence rate but the former produces more accurate
results than the latter does.

5.2.2. Accuracy of acoustic field
The numerical solutions of acoustic pressure using ES-FEM and

FEM along the x-axis at frequency of 2000 Hz ðj ¼ 8:38Þ and
4000 Hz ðj ¼ 16:76Þ are presented in Tables 2 and 3. Both FEM
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Fig. 8. (a) Local relative error in acoustic pressure obtained using the ES-FEM and
the FEM (b) velocity along n-axis (4000 Hz).



Table 3
2D tube natural eigenfrequencies calculated by FEM and ES-FEM.

Eigenvalue Exact (Hz) FEM (Hz) Error of FEM (%) ES-FEM (Hz) Error of ES-FEM (%) Error of FEM

Error of ES-FEM

1 750.00 750.22 0.029333 750.00 0.000000 –
2 1500.00 1501.80 0.120000 1500.00 0.000000 –
3 2250.00 2256.10 0.271111 2250.10 0.004444 61.00000
4 3000.00 3014.50 0.483333 3000.30 0.010000 48.33333
5 3750.00 3778.30 0.754667 3750.60 0.016000 47.16667
6 4500.00 4549.20 1.093333 4501.00 0.022222 49.20000
7 5250.00 5328.50 1.495238 5251.60 0.030476 49.06250
8 6000.00 6117.80 1.963333 6002.30 0.038333 51.21739
9 6750.00 6918.80 2.500741 6753.30 0.048889 51.15152
10 7500.00 7733.20 3.109333 7504.60 0.061333 50.69565
11 7500.00 7836.20 4.482667 7582.00 1.093333 4.10000
12 7537.40 7878.30 4.522780 7618.40 1.074641 4.20864
13 7648.50 8004.30 4.651893 7726.90 1.025038 4.53827
14 7830.20 8211.00 4.863222 7904.50 0.948890 5.12517
15 8077.70 8494.00 5.153695 8147.00 0.857917 6.00722
16 8250.00 8562.90 3.792727 8256.10 0.073939 51.29508
17 8385.30 8848.00 5.517990 8448.80 0.757278 7.28661
18 8746.40 9267.30 5.955593 8804.20 0.660843 9.01211
19 9000.00 9409.70 4.552222 9007.90 0.087778 51.86076
20 9154.90 9746.60 6.463205 9207.30 0.572371 11.29198
21* 9604.70 10276.00 6.989286 9652.50 0.497673 14.04393
22* 9750.00 10281.00 5.446154 9760.00 0.102564 53.10000
23* 10090.00 10866.00 7.690783 10134.00 0.436075 17.63636
24* 10500.00 11164.00 6.323810 10512.00 0.114286 55.33333
25* 10607.00 11499.00 8.409541 10649.00 0.395965 21.23810

* The frequencies do not satisfy the rule of thumb of the relation between the frequency and mesh size.
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and ES-FEM are solved with same number of triangular mesh. To
demonstrate more clearly, a local relative error in acoustic pressure
ep is defined as

ep ¼
pexact � ph
�� ��

pexact
� 100%: ð44Þ

The local relative errors in acoustic pressure are computed for
ES-FEM and FEM models and listed in the Tables 1 and 2. It can
be clearly observed from Tables 1 and 2 that: (a) the present ES-
FEM solutions are in good agreement with the exact solutions
and these results again validate the ES-FEM model. (b) The local
relative errors in acoustic pressure become larger with the in-
crease of frequency for both methods, but the ES-FEM obtains
much more accurate results than the FEM does at the same
frequency.
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Fig. 9. The relative error at different frequency values obtained using the ES-FEM.
The reason why the ES-FEM can give much more accurate re-
sults than the FEM will be further investigated in detail. A compar-
ison between the ES-FEM and FEM for the local relative errors ðepÞ
along the x-axis is given in Figs. 7 and 8a at the frequency of
2000 Hz ðj ¼ 8:38Þ and 4000 Hz ðj ¼ 16:76Þ, while the acoustic
particle velocity linked to the gradient of acoustic pressure are pre-
sented in Figs. 7 and 8b at these two different frequency values. As
depicted in these figures, the peak of local relative errors for ES-
FEM and FEM both occur where the velocity (or gradient of
acoustic pressure) is the maximum (both 2000 Hz and 4000 Hz).
However, the local relative errors of ES-FEM are much smaller than
the corresponding FEM. It is well-known that the linear FEM using
triangular elements produces constant gradient field which will
lead to inaccurate gradient solutions, especially in high-gradient
regions; while the ES-FEM can give better results owing to the
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Fig. 10. Comparison of relative error obtained using the linear FEM and the ES-FEM
by keeping j�h and j3�h2 constant.



Fig. 11. Two meshes of regular and irregular 205 nodes for a chamber of L = 1 m and H = 0.1 m generated with different nodal irregularity parameter.
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edge-based gradient smoothing operation which can soften the
structure and provide a properly softened stiffness to the acoustic
model.

5.2.3. Acoustic eigenfrequencies analysis
Acoustic analysis is now almost routinely performed in the

development of engineering structures (the car passenger com-
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

ξ

P
re

ss
u

re

Exact
FEM(re)
ES-FEM(re)
FEM(irr)
ES-FEM(irr)

(a) Full scale distribution 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

x 10
7

x 10
7

ξ

P
re

ss
u

re

Exact
FEM(re)
ES-FEM(re)
FEM(irr)
ES-FEM(irr)

FEM(irr)

FEM(re)

Exact

ES-FEM(re)

ES-FEM(irr)

(b) Zoomed-in distribution 

detail 

Fig. 12. Acoustic pressure distribution obtained using ES-FEM and FEM along the n-
axis (4000 Hz).
partment and aircraft cabin, etc.), because of the increased aware-
ness of enclosure sound quality. The acoustic performance of these
products can be investigated in the design stage by analyzing the
modal quantities, i.e., eigenfrequencies, eigenmodes. It is known
that the FEM model behaviors more stiff than the continuum coun-
terpart, resulting in a higher predicted eigenfrequencies in acoustic
analysis. So the acoustic eigenfrequencies analysis using ES-FEM
and FEM has been conducted in this section.

The tube is discretized with average mesh size of 0.025m which
satisfies the ‘‘the rule of thumb” guarantee a frequency limit of
9554 Hz. Table 3 lists the first twenty-five natural eigenfrequencies
obtained from ES-FEM and FEM with the same mesh. The analyti-
cal solutions are also listed in the table. As indicated in Table 3, for
low eigenfrequencies, the ES-FEM model can provide much more
accurate eigenfrequencies prediction than the FEM model. For
higher eigenfrequencies, the shift between the numerical eigenfre-
quencies of FEM and the analytical becomes much larger, while the
present ES-FEM still gives very accurate solution. This numerical
example also validates that ES-FEM behaves much softer than
the overly-stiff FEM model and the softened stiffness is much clo-
ser to the continuous system.
0.01 /v m s=

absorbing material

the defined path ab

3.153L m=

a 

b

(a) 

driver’s ear position 

(b)

Fig. 13. (a) Acoustic problem for a 2D car boundary condition, the results on ab
!

path will be closely examined, and (b) mesh.
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5.2.4. Relative error and control for ES-FEM
To investigate the relative error according to the definition in

Eq. (34) of present ES-FEM, four types of uniform mesh (103,
365, 1369, 5297 nodes, respectively) are employed. The results of
ES-FEM for several frequency values are plotted in Fig. 9. As shown
in this figure, at lower frequency values, the relative error is small
even though the mesh size is large; with the increase of frequency
value, the relative error increases obviously compared to that of
the lower frequency with the same mesh. It means that a certain
level of error should be controlled using more nodes for the ES-
FEM at high frequency. Therefore the relation of non-dimensional
j and mesh size �h is studied in more detail in order to control
the relative error of ES-FEM. Based on Eq. (35), the control of the
numerical error is related to the control of the non-dimensional
terms j�h and j3�h2. Keeping j�h constant by varying wave number
and mesh size under the condition j�h < 1, the relative error will
increase linearly with wave number j due to the term j3�h2. While
keeping j3�h2 constant by varying wave number and mesh size, the
Fig. 14. (a) Acoustic pressure distribution obtained using ES-FEM (200 Hz). (b) Acoustic p
obtained using FEM with 22524 nodes (200 Hz).
relative error depends only on the interpolation error and hence
can be controlled. A test to show this is conducted using both
ES-FEM and FEM by keeping j�h and j3�h2 constant.

A comparison between the ES-FEM and FEM relative errors is
shown in Fig. 10 by keeping j�h and j3�h2 constant. As indicated
in the figure, keeping j3�h2 constant, both ES-FEM and FEM can give
acceptable results, while the result of ES-FEM is improved signifi-
cantly; keeping j�h constant, the relative errors of both ES-FEM
and FEM increase noticeably but the present ES-FEM is less sensi-
tive to wave number than the FEM. It can be concluded that keep-
ing j3�h2 constant is more sufficient to obtain acceptable results for
both ES-FEM and FEM models, and the present ES-FEM is more sta-
ble than FEM by keeping jh or j3�h2 constant.

5.2.5. Effects of nodal irregularity
To evaluate the influence of the mesh irregularities on the accu-

racy, the numerical example about regular mesh and irregular
mesh will be tested. The irregularly distributed nodes are
ressure distribution obtained using FEM (200 Hz). (c) Acoustic pressure distribution
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generated based on nodal irregularity degree defined in the follow-
ing expression:

x0 ¼ xþ Dx � rc � bir;

y0 ¼ yþ Dy � rc � bir;
ð45Þ

where x0 and y0 are the coordinates of the irregular mesh, x and y are
original regular coordinates, Dx and Dy are the initial regular nodal
spacing in x- and y-directions, rc is a computer-generated random
Fig. 15. (a) Acoustic pressure distribution obtained using ES-FEM (400 Hz). (b) Acoustic p
obtained using FEM with 22524 nodes (400 Hz).
number between �1.0 and 1.0, and bir is a prescribed irregularity
degree whose value is varied between 0.0 and 0.5. A bigger value
of bir leads to more irregular nodes distribution to be used in the no-
dal irregularity study. Fig. 11 presents the result of two mesh mod-
els of different nodal irregularity.

The study is performed at the frequency of 4000 Hz with two
types of mesh. The acoustic pressure distributions computed using
the ES-FEM along the x-axis are plotted in Fig. 12a and b together
with the exact solution. For the purpose of comparison, the FEM
ressure distribution obtained using FEM (400 Hz). (c) Acoustic pressure distribution
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results are also presented. The pictures show that the FEM results
will become worse when the irregular meshes are used. However,
the accuracy of ES-FEM solutions changes only a little when the
irregular arrangement nodes switch to regular arrangement nodes.
These crucial findings imply that the present ES-FEM works well
even with the extremely distorted cells. The FEM, however, is
known and confirmed here being sensitive to mesh distortions.

5.3. 2D car acoustic problem

We now consider a problem of analyzing the acoustic pressure
distribution in a car passenger compartment [27], where one of the
main sources generating the noise in the passenger compartment
is engine vibration. The geometry of the passenger compartment
is approximately considered as prismatic and it is possible to sim-
plify the three dimensional to two-dimensional. Fig. 13a illustrates
the 2D geometry of the problem domain. The front panel of the
passenger compartment is subjected to the vibration coming from
the engine with the velocity of 0.01 m/s. The roof of the passenger
compartment is fixed with absorbing material with admittance of
0.00144 m/(Pa s). The frequency values of 200 Hz and 400 Hz will
be studied in the model.

Fig. 13b shows the distribution of 305 nodes with the average
spacing of 0.1 m, which can satisfy ‘‘the rule of thumb” for the con-
sidered frequency values. Figs. 14 and 15a are acoustic pressure
distributed in the passenger compartment at 200 Hz and 400 Hz
obtained from the ES-FEM, while the results using the FEM at
200 Hz and 400 Hz are plotted in Figs. 14 and 15b, respectively. Be-
cause the analytical solution is unavailable for this problem, a ref-
erence configuration using FEM with a very fine mesh (22,524
nodes) is adopted and the results at 200 Hz and 400 Hz are plotted
in Figs. 14 and 15c.

From these figures, it is found that the contours of the pressure
obtained from ES-FEM and FEM are similar compared with the ref-
erence solution in the same scale for 200 Hz. When it comes to
higher frequency (f = 400 Hz), the contour of the pressure obtained
from the ES-FEM does not deviate much from the reference result,
while the result from the FEM has been affected significantly by
higher frequency and departs a lot from the reference result. To
show the results quantitatively for these two frequency values,
the real part of pressure obtained from the ES-FEM and FEM along
the defined path ab

!
shown in Fig. 13a are given in Fig. 16a and b,

respectively. The errors of the real part of the pressure obtained
from the ES-FEM and FEM along the defined path ab

!
are similar

to the reference result at the frequency of 200 Hz, while when
the frequency is 400 Hz, the real part of acoustic pressure obtained
from the ES-FEM along the defined path ab

!
varies a little from the

reference result, but much less than that of FEM.
Then the direct frequency response analysis is conducted using

present ES-FEM and FEM. The frequency response analysis solves
Eq. (15) for the selected frequencies. At each frequency, the system
equations are set up and solved to obtain the pressure distribution
{P}. The boundary conditions for this 2D car problem are the same
as previous one including the Neumann and Admittance boundary
conditions. The average mesh size is 0.1 m which gives frequency
limit of 541 Hz. A full range frequency sweep is done from 1 Hz
to 800 Hz at intervals of 1.0 Hz and the response (sound pressure
level) at the driver’s ear point, illustrated in Fig. 13b is measured.
The results using ES-FEM and FEM are depicted in Fig. 17. As the
analytical solution is unavailable, the reference solution using
FEM with 22,524 nodes is also provided. As shown in the figure,
the ES-FEM can provide much better result than FEM in the full fre-
quency range. We also note that when the frequency exceeds
541 Hz which is the limit of the FEM based on the rule of thumb,
a deviation between the ES-FEM and the reference result can also
be observed, but the present ES-FEM can still give more accurate



Fig. 18. 3D acoustics in an engine chamber (a) CAD model (b) mesh of tetrahedrons.

Fig. 19. Real part of acoustic pressure distribution: (a) ES-FEM (b) FEM (c) Reference (frequency = 400 Hz).
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solutions compared with FEM. This numerical example validates
that ES-FEM with softened stiffness can give very accurate solution
even at high frequencies.

5.4. 3D engine chamber problem

Due to the excellent features of ES-FEM confirmed by the 2D
problems, we have further developed a 3D code. This 3D numerical
example is developed to analyze the acoustical pressure distribu-
tion in an engine chamber. The vibration of the engine is found
to be a major noise source. The model is described in Fig. 18, the
engine is located at the bottom center of the field and the velocity
of vibration surface is 0.01 m/s, the absorbing material is attached
to the engine hood and the admittance is set at 0.00144 m/(Pa s).
The model is discretized with 1211 node with average node
spacing of 0.05 m. This 3D example is studied using both FEM
and ES-FEM with a frequency of 400 Hz. A similar example has
been studied in [28].

The acoustic pressure distribution of ES-FEM versus FEM with
1211 nodes are plotted in Fig. 19a and b, respectively. The refer-
ence result obtained from the FEM with a very fine mesh (21197
nodes) is also plotted in Fig. 19c. These figures show that for this
3D case the contour lines of ES-FEM solution are closer to the ref-
erence solution and much smoother than that of FEM result, espe-
cially in high-gradient domains.
6. Conclusions and discussions

In this work, the edge-based smoothed finite element (ES-FEM)
is further formulated for solving acoustic problems in 2D and 3D
domains. The smoothed Galerkin weak form is adopted to formu-
late the discretized system equations and the numerical integra-
tion is performed based on the smoothing domains associated
with the edges of the triangles in 2D or surfaces of tetrahedrons
in 3D. A number of acoustic problems are investigated in detail
to study the accuracy, convergence and error control of the ES-
FEM. The following conclusion can be derived as:

(a) The ES-FEM using triangular elements in 2D space and tetra-
hedral elements in 3D space is very simple; no additional
parameters or degrees of freedoms are needed, and the
method can be implemented in a straightforward way with
little change to the FEM code.
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(b) The ES-FEM is less sensitive to the wave number and can
achieve higher accuracy than the FEM does, especially for
higher wave numbers. The ES-FEM can also provide much
better frequency response solution and natural eigenfre-
quencies prediction in acoustic analysis. This is due to the
edge-based gradient smoothing technique used in the ES-
FEM providing a properly softened stiffness to the model.

(c) The ES-FEM is not sensitive to distortion of element.
(d) For the practical acoustic problems with complicated

domains and boundary conditions, the ES-FEM obtains much
more accurate results than the FEM does with the same
mesh. It indicates that the present ES-FEM has great poten-
tial in the practical analysis of acoustic problems.
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