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a b s t r a c t

In this paper, an edge-based smoothed finite element method (ES-FEM) is formulated for stress field
determination of elastic–plastic problems using triangular meshes, in which smoothing domains asso-
ciated with the edges of the triangles are used for smoothing operations to improve the accuracy and the
convergence rate of the method. The smoothed Galerkin weak form is adopted to obtain the discretized
system equations, and the numerical integration becomes a simple summation over the edge-based
smoothing domains. The pseudo-elastic method is employed for the determination of stress field and
Hencky’s total deformation theory is used to define effective elastic material parameters, which are
treated as field variables and considered as functions of the final state of stress fields. The effective elastic
material parameters are then obtained in an iterative manner based on the strain controlled projection
method from the uniaxial material curve. Some numerical examples are investigated and excellent
results have been obtained demonstrating the effectivity of the present method.

� 2008 Published by Elsevier Ltd.
1. Introduction

For the analysis and design in engineering structures, the elasto-
plastic behavior of structure materials needs often to be considered.
However, the complicated nonlinear stress–strain relationship and
the loading path dependency in the plastic range make the analysis
tedious. In the past several decades, the finite element method has
been well developed and used as an important tool to analyze
material nonlinear problems in practical engineering applications
[1–4]. However, the displacement-based fully compatible finite
element method has an inherent characteristic known as the
overly-stiff phenomenon, especially when linear triangular
elements are used.

To overcome the overly-stiff phenomenon and effectively
‘‘soften’’ the discretized system, Liu et al. have applied the
smoothing technique [5] in a number of meshing free and finite
element settings. A generalized gradient smoothing technique [6]
has been proposed and used to establish weakened weak (W2)
formulations known as the generalized smoothed Galerkin weak
form [7] that allows the use of discontinuous shape functions. Some
: þ86 731 8822051.
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important properties including variational consistence, conver-
gence, upper bound and soft effects of W2 models have been
revealed, proved or examined in detail. Liu et al. have also sug-
gested various ways (cell-based, node-based, and edge-based) to
create the smoothing domains for models of desired properties. In
models using finite elements, cell-based smoothing domains are
created by further dividing the elements into one or more
smoothing cells (SC), leading to the so-called smoothed finite
element method (SFEM) [8–10]. As SFEM computes the integrals
along the edge of the smoothing domains, no derivatives of shape
functions are needed, no mapping is required, and simple point
interpolation methods can be used. It works well for very heavily
distorted mesh, in addition to a number of important properties,
such as the softening effects, better accuracy and upper bound for
some class of problems. Using the node-based smoothing opera-
tion, NS-FEM was also been formulated that can often provide
upper bound solutions for force driven problems [11]. Using the
point interpolation method for shape function construction,
a node-based smoothed point interpolation method (NS-PIM or LC-
PIM) was formulated [12,13] and extended for heat transfer and
thermoelasticity problems [14]. Liu and Zhang [13] proved that the
NS-PIM is variationally consistent, can provide much better stress
results, and more importantly can often provide upper bound
solution in energy norm (for force driven problems). It is found,
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Fig. 1. The problem domain is divided into Nelement triangular elements with a total of
Nedge edges. Interior edge k is sandwiched in the smoothing domain Uk. Smoothing
domain Um for the boundary edge m is a triangle. There are Nk nodes that influence the
kth smoothing domain Uk. For domains associated with boundary edges Nk¼ 3; for
example, nodes n5, n6 and n7 influence Um. For domains associated with interior edges
Nk¼ 4; for example, nodes n1, n2, n3 and n4 influence Uk.
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however, the NS-FEM or NS-PIM is too soft and hence has spurious
modes when used for dynamic problems. Recently, an edge-based
smoothed finite element method (ES-FEM) [15] has been proposed
for 2D solid mechanics problems using edge-based smoothing
domains. It has been found that the ES-FEM model is of closed-
to-exact stiffness and gives ultra-accurate (one order more accurate)
solution when triangular elements are used compared with the FEM.

A number of numerical techniques has been developed so far to
solve the elasto-plasticity problems. The idea of using elastic
solutions for approximation of inelastic behavior has been
receiving much interest. Neuber [16] obtained elasto-plastic stress
and strains at the stress concentration point using elastic solutions
in early 1960s. Dhalla and Jones [17] used finite element elastic
analysis for approximation of limit loads for pressure vessels and
piping design. Based on this method, Seshadri [18] developed
a generalized local stress and strain (GLOSS) method and used it to
approximate plastic strains at local regions. Jahed et al. [19]
developed a comprehensive method for solving pressure vessel
problems in the elasto-plastic range based on elastic solutions.
Babu and Iyer [20] developed a robust method using relaxation
method, based on the GLOSS method, and an attempt was made to
satisfy force equilibrium in the plastic range. Chen and Ponter
performed shakedown and limit analyses for 3-D structures [21]
and integrity assessment for a tubeplate [22] using linear matching
method. This method also applied to the high temperature life
integrity of structures [23,24]. Recently, Desikan and Sethuraman
[25] proposed a pseudo-elastic finite element method for the
determination of inelastic material parameters. In this method,
material nonlinear problem was solved using the pseudo-elastic
linear finite element method with suitable updation of elastic
material properties during the process of iteration. Some researchers
have adopted this method to solve material nonlinear problems,
such as Sethuraman and Reddy [26], Dai et al. [27] and Gu et al. [28].

In this paper, the edge-based smoothed finite element method
(ES-FEM) is formulated for solving material nonlinear problems
based on Hencky’s deformation theory. The problem domain is first
discretized into a set of triangular elements and the smoothing
domains associated with the edges of the triangles are then further
formed. The material parameters are considered as field variables,
and the linear elastic ES-FEM analysis will be carried out to get the
pseudo-stress distributions. The stresses in each edge smoothing
domain are constants, and the stresses at the nodes will be
obtained by averaging the values of the associated smoothing
domains. An iteration procedure is used to update the material
parameters until equivalent stress–strain point in all smoothing
domains coincide with the uniaxial experimental material curve.
The strain controlled projection method is employed to calculate
these effective material parameters. Problems with three material
models, elastic-perfectly plastic material, work-hardening material
and Ramberg–Osgood model, are presented to illustrate the effec-
tivity of the ES-FEM formulation for the elasto-plastic analysis
through comparing the numerical results with those obtained by
the finite element commercial software ABAQUS.

2. ES-FEM formulations

As shown in Fig. 1, the problem domain U is divided into Nelement

triangular elements with a total of Nedge edges. Based on the
triangular elements, smoothing domain for each edge is formed by
sequentially connecting two end points of the edge and centroids of
its surrounding triangles, such that U ¼ U1WU2W/WUNedge

and
UiXUj ¼ B (i s j, i¼ 1,.,Nedge, j¼ 1,.,Nedge). In the ES-FEM, the
displacement interpolation is element based as in the FEM, but the
integration is based on the smoothing domains that are used for
strain filed smoothing.
At any point in a triangular element, the displacement field u in
the element is interpolated using the nodal displacements at the
nodes of the element by the linear shape functions, same as in the
standard linear FEM,

uðxÞ ¼
X3

i¼1

NiðxÞdi (1)

where di ¼ fui; vigT is the nodal displacement at node i, Ni(x) is
a diagonal matrix of shape functions.

Using strain–displacement equations, the compatible strain in
each element can be given by

3ðxÞ ¼ LuðxÞ (2)

in which

L ¼

v

vx
0

v

vy
v

vy
v

vx
0

2
664

3
775

T

(3)

Substituting Eq. (1) into Eq. (2), we can get

3ðxÞ ¼ BðxÞd (4)

where

B ¼ ½B1;B2;B3�

Bi ¼
�

Ni;x 0 Ni;y
Ni;y Ni;x 0

�T (5)

In order to compensate the ‘‘over-stiffness’’ of the FEM model,
a smoothed strain is introduced instead of compatible strain to
‘‘soften’’ the system. As shown in Fig. 1, the smoothed strain in the
kth smoothing domain can be expressed as [5,6]

3k ¼
Z
Uk

3ðxÞfkðxÞdU (6)

where fk(x) is a given smoothing function that satisfies at least
unity property
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fkðxÞdU ¼ 1 (7)

Z
U

A constant smoothing function is adopted as follows

fkðxÞ ¼
�

1=Ak x˛Uk
0 x;Uk

(8)

where Ak is the area of the smoothing domain Uk.
For interior edges, the smoothing domain Uk of edge k is formed

by assembling two sub-domains Uk1 and Uk2 of two neighboring
elements. The sub-domain Uk1 and the sub-domain Uk2 are from
element e1 and element e2, respectively. The smoothed strain in
smoothing domain Uk can be given by

3k ¼
1
Ak

0
B@ Z

Uk1

3k1ðxÞdUþ
Z

Uk2

3k2ðxÞdU

1
CA (9)

where 3k1(x) is the compatible strain calculated in element e1, and
3k2(x) is the compatible strain calculated in element e2.

Since linear shape functions are used in the present method, the
compatible strain is a constant in each smoothing sub-domain.
Therefore, Eq. (9) can be rewritten as

3k ¼
1
Ak
ðAk13k1 þ Ak13k2Þ (10)

where Ak1 and Ak2 are areas of the smoothing sub-domains Uk1 and
Uk2, respectively.

Substituting Eq. (4) into Eq. (10), the smoothed strain can be
given by

3k ¼
Ak1

Ak
Bk1dk1 þ

Ak2

Ak
Bk2dk2 ¼ Bkdk (11)

where dk1 and dk2 are the nodal displacements vector of the
element e1 and the element e2, respectively, dk is the displacement
vector of the nodes associated with edge k, Bk1 and Bk2 are the
compatible strain matrices of the smoothing sub-domain Uk1 and
Uk2, respectively.

From Eq. (11), the smoothed strain matrix Bk is written as

Bk ¼
Ak1

Ak
Bk1 þ

Ak2

Ak
Bk2 (12)

Note that the sign ‘þ’ denotes assembly but not sum here.
Using smoothed strain, the stress in the smoothing domain can

be calculated by

sk ¼ Dk
eff 3k (13)

In Eq. (13), Dk
eff is the effective material matrix for smoothing domain

Uk, and is obtained from the effective constitutive equation, i.e.

Dk
eff ¼

Ek
eff

1� nk
eff

�

2
664

1 nk
eff 0

nk
eff 1 0

0 0
�

1�
�

nk
eff

�2��
2

3
775 for plane stress

(14)

where Ek
eff and nk

eff are effective Young’s modulus and Poisson’s
ratio, which will be introduced in next section.

Using the smoothed strain obtained previously, we now seek for
a weak form solution of displacement field u that satisfies the
following smoothed Galerkin weak form [6]
d3Ts dU� duTb dU� duTt dG ¼ 0 (15)

Z
U

Z
U

Z
G

where b is the body force, and t is the boundary traction.
Substituting Eqs. (1), (11) and (13) into Eq. (15), a set of dis-

cretized algebraic system equations can be obtained in the
following matrix form

Kd� f ¼ 0 (16)

where d is the vector of nodal displacement at all the nodes, and f is
the force vector defined as

f ¼
Z
U

NTðxÞb dUþ
Z
G

NTðxÞt dG (17)

In Eq. (16), K is the (global) smoothed stiffness matrix of present
ES-FEM, it is assembled in the form of

Kij ¼
XNedge

k¼1

KijðkÞ (18)

The summation in Eq. (18) means an assembly process same as the
practice in the FEM, Nedge is the number of the edges of the whole
problem domain U, and KijðkÞ is the stiffness matrix associated with
Uk that is computed by

KijðkÞ ¼
Z
Uk

ðBkÞTi Dk
eff ðBkÞj dU ¼ ðBkÞTi Dk

eff ðBkÞjAk (19)

3. Stress–strain relationship for effective material parameters

From the work of Jahed et al. [19], the strain–stress relationship
can be taken in the form of

3ij ¼ f
�
sij
	

(20)

in which total strain 3ij is the summation of an elastic part 3e
ij and

a plastic part 3p
ij,

3ij ¼ 3e
ij þ 3p

ij (21)

The elastic strain tensor relates to the stress tensor by Hooke’s
law for isotropic material

3e
ij ¼

1þ n

E
sij �

n

E
skkdij (22)

where n is Poisson’s ratio, E is Young’s modulus, and dij is the Delta
function.

The plastic strain tensor is related to the deviatoric component
of stress tensor and is given by Hencky’s deformation theory

3p
ij ¼ FSij (23)

where

Sij ¼ sij �
1
3

skkdij (24)

and F is a scalar valued function as given by

F ¼
33p

eq

2seq
¼ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23p

ij3
p
ij=3

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3SijSij=2

q (25)
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Substituting Eqs. (22)–(25) into Eq. (21) yields

3ij ¼
�

1þ n

E
þ F

�
sij �

�
n

E
þ 1

3
F

�
skkdij (26)

All the variables inside the parentheses in Eq. (26) are involved with
the material properties, final equivalent plastic strain and equiva-
lent stress. This equation can be rewritten as

3ij ¼
 

1þ neff

Eeff

!
sij �

 
neff

Eeff

!
skkdij (27)

where Eeff and neff are the equivalent Young’s modulus and Pois-
son’s ratio, which are given by

Eeff ¼
1

ð1=EÞ þ ð2F=3Þ (28)

neff ¼ Eeff

�
n

E
þ F

3

�
¼ Eeff

 
n

E
þ 1

2

 
1

Eeff
� 1

E

!!
(29)

4. Determination of effective material parameters

In the present section, projection method [25] is used for the
determination of effective material parameters, Eeff and neff, needed
to calculate Deff. First, a linear elastic analysis is carried out to get
the initial stress field. The equivalent stress using von Mises yield is
used in comparison with the yield stress s0. If the equivalent stress
is smaller than the yield stress s0, the computing is completed
because the material is still in the elastic region; if the equivalent
stress is larger than the yield stress s0, it means that the defor-
mation has already entered the plastic region, and the following
iteration will be performed.

From the ES-FEM linear elastic analysis, we get the equivalent
stress for each smoothing domain, and the state is shown as point 1
in Fig. 2. Keeping the strain value 31 the same (i.e. strain controlled),
and projecting point 1 on the experimental uniaxial material curve
to get point 10, the effective value of Young’s modulus, Eð1Þeff , for the
next iteration is obtained from the slope of the straight line 0–10.
Substituting this effective value into Eq. (29), the effective Poisson’s
εε

E

Eeff
(1)

1

1'

2

2'

3

3'

0

Eeff
(2)

(2)ε (1)

Fig. 2. Projection method for determination of Eeff.
ratio, nð1Þeff , can also be obtained. With the new effective material
parameters the next ES-FEM linear elastic analysis is performed to
get point 2 and its projection 20, and further to obtain Eð2Þeff and nð2Þeff .
This iterative procedure is repeated until all the effective material
parameters converge and equivalent stresses of all points fall on the
experimental uniaxial stress–strain curve. The convergence is
checked using following criterionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNedge

k¼1

�
Ek

eff ðiþ 1Þ � Ek
eff ðiÞ

�2

PNedge

k¼1

�
Ek

eff ðiÞ
�2

vuuuuut � d (30)

where Ek
eff ðiÞ and Ek

eff ðiþ 1Þ are the effective Young’s modulus of the
ith and (iþ 1)th iteration steps of the kth smoothing domain,
b

Fig. 3. Cylindrical pressure vessel subjected to internal pressure; (a) geometry and the
boundary loading conditions; (b) mesh arrange of the model.
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respectively, and d is the tolerance for convergence constant which
is set to 10�3 in the study of the numerical examples.

It must be pointed out that if the applied loading is just large
enough for the results failing to converge, the material is then
regarded failed, and this loading is marked as the critical failure
loading.

In this study, three different material models, elastic-perfectly
plastic material, linearly work-hardening material and Ramberg–
Osgood model, will be investigated for numerical examples. For
elastic-perfectly plastic material, the stress–strain relation is
given by

3 ¼
�

s=E s < s0
s0=E þ 3p s � s0

(31)

Using Eq. (28), Eeff can be expressed by

Eeff ¼
s0

3
(32)

In the case of linearly work-hardening material model, it is
assumed that the material has tangent modulus ET. The material
curve is

3 ¼
�

s=E s < s0
s0=E þ ðs� s0Þ=ET s � s0

(33)

and Eeff is given by

Eeff ¼
s0 þ 3pET

3
(34)

Ramberg–Osgood model is one general case of hardening
material, and is described by the following formulation

3

30
¼ s

s0
þ a

�
s

s0

�n

(35)

where 30¼ s0/E is the strain at initial yield, a is the yield offset, and
n is the hardening exponent. Both a and n are preassigned material
constants before computation. The effective Young’s modulus Eeff is
obtained as

Eeff ¼ 1
.�1

E
þ a

30

s0

�
s

s0

�n�1�
(36)

For a determined strain, the stress state according to the strain
can be calculated from Eq. (35) using a nonlinear equation solver.
Eeff can then be evaluated from Eq. (36). Once Eeff is determined, neff

can be obtained from Eq. (29).
5. Numerical examples

5.1. Cylindrical vessel

To illustrate the validity of the proposed ES-FEM in material
nonlinear problems, a cylindrical vessel under plane stress condi-
tions subjected to an internal pressure P is investigated. The
geometry and the boundary loading conditions are shown in
Fig. 3a. The inner radius is R1¼0.1 m, and the outer radius is
R2¼ 0.5 m. The material properties are taken as Young’s modulus
E¼ 2.0�1011 Pa, Poisson ratio n¼ 0.3, and yield stress
s0¼ 2.0�108 Pa. For linearly work hardening case, the tangent
modulus is taken as ET¼ E/4. For Ramberg–Osgood model, the yield
offset a¼ 3/7 and hardening exponent n¼ 5 are considered. Owing
to the symmetry conditions, only a quarter of the cylindrical vessel
is modeled, and the model is divided into 20�10 elements, as
shown in Fig. 3b.

To validate the accuracy of the present solutions, the analysis
using the finite element commercial software ABAQUS is also
carried out using quadrilateral element with the same discretiza-
tion nodes. At first, the material is considered as elastic-perfectly
plastic model. The variations of radial, hoop and equivalent von
Mises stresses along the thickness direction of the cylinder for
pressure ratio P/s0¼1.0 are shown in Fig. 4. In present ES-FEM, the
stress values at node are obtained by averaging the values of the
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associated smoothing domains. It is observed that the present
stresses’ nodes consist well with ABAQUS curve all along. Fig. 5
demonstrates the state of von Mises stress for a set of nodes in
radial direction after convergence. It can be seen that all the nodes
are in good agreement with the uniaxial material curve. Fig. 6 gives
the stress variations for different internal pressure ratios. The
dimension of the plastic zone can be easily estimated from stress
distributions, which compares well with ABAQUS quadrilateral
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element. As elastic-perfectly plastic model is used, the von Mises
stresses in plastic zone are all equal to yield stress s0.

Fig. 7 shows the convergence path for a material point during the
process of iteration. Here, convergence is assumed to be achieved
when Eq. (30) is satisfied. It can be seen that the point falls on the
uniaxial material curve quickly. Fig. 8 presents the load–displacement
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curves obtained by the present method. For comparison, the reference
solutions obtained using ABAQUS with large number of quadrilateral
elements (40,000) are also plotted in the same figure. It is obvious that
the ES-FEM method gives very accurate results.

The example is performed again using the linearly hardening
material model. The distributions of the von Mises stress, hoop
stress and radial stress are all shown in Fig. 9. It clearly shows that
the solutions using present ES-FEM coincide well with those of
ABAQUS quadrilateral element. We can easily find that plastic
deformation occurs in the region in which the normalized equiv-
alent von Mises stress is larger than 1.0. Because of the material
work hardening, the normalized equivalent von Mises stress in
the plastic region no longer remains at 1.0. Fig. 10 shows the
convergence path for a particular point using linearly hardening
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Fig. 14. Comparison of computed v
material model. It can be observed that all the nodes fall on the
uniaxial material curve quickly.

A Ramberg–Osgood material model with yield offset a¼ 3/7 and
hardening exponent n¼ 5 is also considered for this problem. The
results are shown in Figs. 11 and 12. It is observed again that the
present solutions match well with those of ABAQUS quadrilateral
element and the final stress–strain state as well as the convergence
path are quite reasonable.

5.2. A nozzle with internal pressure

A nozzle subjected to internal pressure is analyzed to demon-
strate more features of the present method. The geometry and the
numerical model are shown in Fig. 13. The same case is also
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analyzed using ABAQUS with triangular element and a reference
solution is also computed using ABAQUS quadrilateral elements
with large number of nodes (36,868) for comparison. Linear work-
hardening material model is employed here, and the material
parameters are given as Young’s modulus E¼ 2.1�105 MPa, Pois-
son ratio n¼ 0.3, yield stress s0¼ 210 MPa, and the tangent
modulus is taken as ET¼ E/4. The internal pressure p is equal to the
yield stress s0.

Fig. 14 shows the comparison of computed von Mises stress
distributions between the present method, ABAQUS using the same
triangular elements and the reference ones obtained using ABAQUS
with fine mesh (36,868) of quadrilateral elements. It is clearly
shown that the present result agrees better with reference solution
than those obtained using ABAQUS triangular elements with the
same mesh, especially in the zone of large von Mises.
6. Conclusions

In this paper, the edge-based smoothed finite element method
(ES-FEM) is formulated to analyze material nonlinear problems. In
present ES-FEM, the smoothed Galerkin weak form is used for dis-
cretizing the system equations and the numerical integration is
performed based on the smoothing domains associated with edges of
the mesh. Material nonlinearity is considered as pseudo-linear elastic
analysis by suitable updating of material properties in terms of
effective material parameters. Based on Hencky’s total deformation
theory, the effective elastic material parameters can be easily
obtained in an iterative procedure from the one-dimensional uniaxial
material curve. Numerical examples using von Mises material have
been successfully analyzed obeying elastic-perfectly plastic, linearly
work-hardening or Ramberg–Osgood hardening model, respectively,
and very good results have been obtained. Through these investiga-
tions, the following conclusions can be drawn.

(1) In the present ES-FEM, the formulation is straightforward and
the implementation is as easy as the FEM, without the increase
of degree of freedoms. Hence the present method is very
simple and can be easily implemented with little changes to
the FEM code.

(2) Through smoothing operation, the present method can provide
a much needed softening effect to the model and the ‘‘overly-
stiff’’ phenomenon of the compatible displacement-based FEM
model is ameliorated effectively. Therefore, the performance of
the present method is greatly enhanced, and numerical results
obtained using triangular elements achieve the same accuracy
level as ABAQUS quadrilateral elements.

(3) In the proposed method, many techniques used in linear elastic
analysis can be easily incorporated here with only minor
revisions. Compared with the conventional inelastic analysis
using classical incremental theory and Newton–Raphson
method, the present scheme can be easily implemented in
a numerically straightforward way.
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