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Abstract Smoothed particle hydrodynamics (SPH) is a
meshfree particle method based on Lagrangian formulation,
and has been widely applied to different areas in engineer-
ing and science. This paper presents an overview on the
SPH method and its recent developments, including (1) the
need for meshfree particle methods, and advantages of SPH,
(2) approximation schemes of the conventional SPH method
and numerical techniques for deriving SPH formulations
for partial differential equations such as the Navier-Stokes
(N-S) equations, (3) the role of the smoothing kernel func-
tions and a general approach to construct smoothing kernel
functions, (4) kernel and particle consistency for the SPH
method, and approaches for restoring particle consistency,
(5) several important numerical aspects, and (6) some recent
applications of SPH. The paper ends with some concluding
remarks.

1 Introduction

1.1 Traditional Grid Based Numerical Methods

Computer simulation has increasingly become a more and
more important tool for solving practical and complicated
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problems in engineering and science. It plays a valuable role
in providing tests and examinations for theories, offering in-
sights to complex physics, and assisting in the interpretation
and even the discovery of new phenomena. Grid or mesh
based numerical methods such as the finite difference meth-
ods (FDM), finite volume methods (FVM) and the finite el-
ement methods (FEM) have been widely applied to various
areas of computational fluid dynamics (CFD) and compu-
tational solid mechanics (CSM). These methods are very
useful to solve differential or partial differential equations
(PDEs) that govern the concerned physical phenomena. For
centuries, the FDM has been used as a major tool for solv-
ing partial differential equations defined in problem domains
with simple geometries. For decades, the FVM dominates in
solving fluid flow problems and FEM plays an essential role
for solid mechanics problems with complex geometry [1–3].
One notable feature of the grid based numerical models is to
divide a continuum domain into discrete small subdomains,
via a process termed as discretization or meshing. The in-
dividual grid points (or nodes) are connected together in a
pre-defined manner by a topological map, which is termed
as a mesh (or grid). The meshing results in elements in FEM,
cells in FVM, and grids in FDM. A mesh or grid system
consisting of nodes, and cells or elements must be defined
to provide the relationship between the nodes before the ap-
proximation process for the differential or partial differential
equations. Based on a properly pre-defined mesh, the gov-
erning equations can be converted to a set of algebraic equa-
tions with nodal unknowns for the field variables. So far the
grid based numerical models have achieved remarkably, and
they are currently the dominant methods in numerical sim-
ulations for solving practical problems in engineering and
science [1–5].

Despite the great success, grid based numerical methods
suffer from difficulties in some aspects, which limit their
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applications in many types of complicated problems. The
major difficulties are resulted from the use of mesh, which
should always ensure that the numerical compatibility con-
dition is the same as the physical compatibility condition for
a continuum. Hence, the use of grid/mesh can lead to vari-
ous difficulties in dealing with problems with free surface,
deformable boundary, moving interface, and extremely large
deformation and crack propagation. Moreover, for problems
with complicated geometry, the generation of a quality mesh
has become a difficult, time-consuming and costly process.

In grid based numerical methods, mesh generation for the
problem domain is a prerequisite for the numerical simula-
tions. For Eulerian grid methods such as FDM constructing
a regular grid for irregular or complex geometry has never
been an easy task, and usually requires additional compli-
cated mathematical transformation that can be even more
expensive than solving the problem itself. Determining the
precise locations of the inhomogeneities, free surfaces, de-
formable boundaries and moving interfaces within the frame
of the fixed Eulerian grid is also a formidable task. The
Eulerian methods are also not well suited to problems that
need monitoring the material properties in fixed volumes,
e.g. particulate flows [1, 2, 6]. For the Lagrangian grid meth-
ods like FEM, mesh generation is necessary for the solids
and structures, and usually occupies a significant portion of
the computational effort. Treatment of extremely large de-
formation is an important issue in a Lagrangian grid based
method. It usually requires special techniques like rezoning.
Mesh rezoning, however, is tedious and time-consuming,
and may introduce additional inaccuracy into the solution
[3, 7].

The difficulties and limitations of the grid based methods
are especially evident when simulating hydrodynamic phe-
nomena such as explosion and high velocity impact (HVI).
In the whole process of an explosion, there exist special
features such as large deformations, large inhomogeneities,
moving material interfaces, deformable boundaries, and free
surfaces [8]. These special features pose great challenges to
numerical simulations using the grid based methods. High
velocity impact problems involve shock waves propagating
through the colliding or impacting bodies that can behave
like fluids. Analytically, the equations of motion and a high-
pressure equation of state are the key descriptors of mater-
ial behavior. In HVI phenomena, there also exist large de-
formations, moving material interfaces, deformable bound-
aries, and free surfaces, which are, again, very difficult for
grid based numerical methods to cope with [9].

The grid based numerical methods are also not suitable
for situations where the main concern of the object is a set
of discrete physical particles rather than a continuum. Typi-
cal examples include the interaction of stars in astrophysics,
movement of millions of atoms in an equilibrium or non-
equilibrium state, dynamic behavior of protein molecules,

and etc. Simulation of such discrete systems using the con-
tinuum grid based methods is often not a good choice [10,
11].

1.2 Meshfree Methods

Over the past years, meshfree methods have been a major
research focus, towards the next generation of more effec-
tive computational methods for more complicated problems
[4, 6]. The key idea of the meshfree methods is to provide
accurate and stable numerical solutions for integral equa-
tions or PDEs with all kinds of possible boundary condi-
tions using a set of arbitrarily distributed nodes or particles
[4, 6]. The history, development, theory and applications of
the major existing meshfree methods have been addressed in
some monographs and review articles [4, 6, 7, 12–15]. The
readers may refer to these literatures for more details of the
meshfree methods. To avoid too much detour from our cen-
tral topic, this article will not further discuss these meshfree
methods and techniques, except for mentioning briefly some
of the latest advancements.

For solid mechanics problems, instead of weak formu-
lations used in FEM, we now have a much more powerful
weakened weak (W2) formulation for general settings of
FEM and meshfree methods [16–19]. The W2 formulation
can create various models with special properties, such up-
per bound property [20–23], ultra-accurate and supper con-
vergent solutions [22, 24–29], and even nearly exact solu-
tions [30, 31]. These W2 formulations have a theoretical
foundation on the novel G space theory [16–19]. All most
all these W2 models work very well with triangular mesh,
and applied for adaptive analyses for complicated geome-
try.

For fluid dynamics problems, the gradient smoothing
method (GSM) has been recently formulated using carefully
designed gradient smoothing domains [32–35]. The GSM
works very well with unstructured triangular mesh, and can
be used effective for adaptive analysis [34]. The GSM is an
excellent alternative to the FVM for CFD problems.

One distinct meshfree method is smoothed particle hy-
drodynamics or SPH. The SPH is a very powerful method
for CFD problems governed by the Navier-Stokes equa-
tions.

1.3 Smoothed Particle Hydrodynamics

Smoothed particle hydrodynamics is a “truly” meshfree,
particle method originally used for continuum scale appli-
cations, and may be regarded as the oldest modern meshfree
particle method. It was first invented to solve astrophysical
problems in three-dimensional open space [36, 37], since
the collective movement of those particles is similar to the
movement of a liquid or gas flow, and it can be modeled by
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the governing equations of the classical Newtonian hydro-
dynamics.

In SPH, the state of a system is represented by a set
of particles, which possess material properties and interact
with each other within the range controlled by a weight func-
tion or smoothing function [6, 38, 39]. The discretization of
the governing equations is based on these discrete particles,
and a variety of particle-based formulations have been used
to calculate the local density, velocity and acceleration of the
fluid. The fluid pressure is calculated from the density using
an equation of state, the particle acceleration is then calcu-
lated from the pressure gradient and the density. For viscous
flows, the effects of physical viscosity on the particle ac-
celerations can also be included. As a Lagrangian particle
method, SPH conserves mass exactly. In SPH, there is no
explicit interface tracking for multiphase flows—the motion
of the fluid is represented by the motion of the particles, and
fluid surfaces or fluid-fluid interfaces move with particles
representing their phase defined at the initial stage.

SPH has some special advantages over the traditional grid
based numerical methods.

1. SPH is a particle method of Lagrangian nature, and the
algorithm is Galilean invariant. It can obtain the time his-
tory of the material particles. The advection and transport
of the system can thus be calculated.

2. By properly deploying particles at specific positions at
the initial stage before the analysis, the free surfaces, ma-
terial interfaces, and moving boundaries can all be traced
naturally in the process of simulation regardless the com-
plicity of the movement of the particles, which have been
very challenging to many Eulerian methods. Therefore,
SPH is an ideal choice for modeling free surface and in-
terfacial flow problems.

3. SPH is a particle method without using a grid/mesh.
This distinct meshfree feature of the SPH method al-
lows a straightforward handling of very large deforma-
tions, since the connectivity between particles are gen-
erated as part of the computation and can change with
time. Typical examples include the SPH applications in
high energy phenomena such as explosion, underwater
explosion, high velocity impact, and penetrations.

4. In SPH method, a particle represents a finite volume in
continuum scale. This is quite similar to the classic mole-
cular dynamics (MD) method [11, 40] that uses a particle
to represent an atom or a molecule in nano-scale, and the
dissipative particle dynamics (DPD) method [41, 42] that
uses a particle to represent a small cluster of molecules
in meso-cale. Thus, it is natural to generalize or extend
SPH to smaller scales, or to couple SPH with molecu-
lar dynamics and dissipative particle dynamics for multi-
ple scale applications, especially in biophysics, and bio-
chemistry.

5. SPH is suitable for problems where the object under
consideration is not a continuum. This is especially true
in bio- and nano- engineering at micro and nano scale,
and astrophysics at astronomic scale. For such problems,
SPH can be a natural choice for numerical simulations.

6. SPH is comparatively easier in numerical implementa-
tion, and it is more natural to develop three-dimensional
numerical models than grid based methods.

The early SPH algorithms were derived from the proba-
bility theory, and statistical mechanics are extensively used
for numerical estimation. These algorithms did not conserve
linear and angular momentum. However, they can give rea-
sonably good results for many astrophysical phenomena.
For the simulations of fluid and solid mechanics problems,
there are challenges to reproduce faithfully the partial differ-
ential equations governing the corresponding fluid and solid
dynamics. These challenges involve accuracy and stability
of the numerical schemes in implementing the SPH meth-
ods.

With the development of the SPH method, and the ex-
tensive applications to a wide range of problems, more at-
tractive features have been showcased while some inher-
ent drawbacks have also been identified. Different variants
or modifications have been proposed to improve the orig-
inal SPH method. For example, Gingold and Monaghan
found the non-conservation of linear and angular momen-
tum of the original SPH algorithm, and then introduced
an SPH algorithm that conserves both linear and angular
momentum [43]. Hu and Adams also invented an angular-
momentum conservative SPH algorithm for incompressible
viscous flows [44].

Many researchers have conducted investigations on the
SPH method on the numerical aspects in accuracy, stabil-
ity, convergence and efficiency. Swegle et al. identified the
tensile instability problem that can be important for mate-
rials with strength [45]. Morris noted the particle inconsis-
tency problem that can lead to poor accuracy in the SPH
solution [46]. Over the past years, different modifications or
corrections have been tried to restore the consistency and
to improve the accuracy of the SPH method. Monaghan
proposed symmetrization formulations that were reported
to have better effects [47–49]. Johnson and his co-workers
gave an axis-symmetry normalization formulation so that,
for velocity fields that yield constant values of normal ve-
locity strains, the normal velocity strains can be exactly
reproduced [50, 51]. Randles and Libersky derived a nor-
malization formulation for the density approximation and a
normalization for the divergence of the stress tensor [52].
Chen et al. proposed a corrective smoothed particle method
(CSPM) which improves the simulation accuracy both in-
side the problem domain and around the boundary area [53,
54]. The CSPM has been improved by Liu et al. in resolv-
ing problems with discontinuity such as shock waves in a
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discontinuous SPH (DSPH) [55]. Liu et al. also proposed
a finite particle method (FPM), which uses a set of basis
function to approximate field variables at a set of arbitrarily
distributed particles [56, 57]. FPM can be regarded as an im-
proved version of SPH and CSPM with better performance
in particle consistency. Batra et al. concurrently developed a
similar idea to FPM, and it is named modified SPH (MSPH)
[58] with applications mainly in solid mechanics. Fang et al.
further improved this idea for simulating free surface flows
[59], and they later developed a regularized Lagrangian fi-
nite point method for the simulation of incompressible vis-
cous flows [60, 61]. A stress point method was invented to
improve the tensile instability and zero energy mode prob-
lems [62–65]. Other notable modifications or corrections
of the SPH method include the moving least square parti-
cle hydrodynamics (MLSPH) [66, 67], the integration ker-
nel correction [68], the reproducing kernel particle method
(RKPM) [69, 70], the correction for stable particle method
[71, 72], and several other particle consistency restoring ap-
proaches [6, 56, 73]. Belytschko and his co-workers have
conducted a series of stability and convergence analyses on
meshfree particle methods, and some of the numerical tech-
niques and analyses can also be applicable to SPH [13, 72,
74].

This article is organized as follows. In Sect. 1, the back-
ground of meshfree particle methods is first addressed with
highlights on overcoming the limitations of the grid based
numerical models. The invention, features and develop-
ments of the SPH method are then briefly introduced. In
Sect. 2, the approximation schemes of the SPH method
are discussed, while some numerical techniques for devel-
oping SPH formulations are presented. The SPH formula-
tions for the N-S equation, which governs the general fluid
flow problems, are also given. Section 3 presents a review
on the smoothing kernel function. Conditions for construct-
ing smoothing functions are developed with examples of
smoothing functions constructed. Section 4 introduces con-
sistency concept of SPH including kernel consistency and
particle consistency, and also provides an in-depth review
on the existing approaches for restoring particle consistency.
Several new approaches are also presented, which include a
discontinuous SPH for simulating problems with disconti-
nuity, a general approach to restore particle inconsistency,
and a finite particle method. In Sect. 5, some important nu-
merical topics in SPH are discussed. These special topics
include (1) solid boundary treatment, (2) representation of
solid obstacles, (3) material interface treatment, and (4) ten-
sile instability. Different applications of the SPH method
have been reviewed in Sect. 6. Some concluding remarks
are given in Sect. 7.

2 SPH Approximation Techniques

The conventional SPH method was originally developed for
hydrodynamics problems in which the governing equations
are in strong form of partial differential equations of field
variables such as density, velocity, energy, and etc. There are
basically two steps in obtaining an SPH formulation. The
first step is to represent a function and/or its derivatives in
continuous form as integral representation, and this step is
usually termed as kernel approximation. In this kernel ap-
proximation step, the approximation of a function and its
derivatives are based on the evaluation of the smoothing ker-
nel function and its derivatives. The second step is usually
referred to as particle approximation. In this step, the com-
putational domain is first discretized by representing the do-
main with a set of initial distribution of particles represent-
ing the initial settings of the problem. After discretization,
field variables on a particle are approximated by a summa-
tion of the values over the nearest neighbor particles.

2.1 Kernel Approximation of a Function

The kernel approximation in the SPH method involves rep-
resentation of a function and its derivatives using a smooth-
ing function. The smoothing function should satisfy some
basic requirements, and it has been called kernel, smoothing
kernel, smoothing kernel function, or sometimes even weight
function in some SPH literature [38, 46, 49, 75]. A detailed
discussion on smoothing function, basic requirements and
constructing conditions will be given in Sect. 3.

The kernel approximation of a function f (x) used in the
SPH method starts from the following identity

f (x) =
∫

�

f (x′)δ(x − x′)dx′, (1)

where f is a function of the position vector x, and δ(x −x′)
is the Dirac delta function given by

δ(x − x′) =
{

1, x = x′,
0, x �= x′. (2)

In (1), � is the volume of the integral that contains x. Equa-
tion (1) implies that a function can be represented in an inte-
gral form. Since the Dirac delta function is used, the integral
representation in (2) is exact and rigorous, as long as f (x)

is defined and continuous in �.
The Delta function δ(x − x′) with only a “point” sup-

port, and hence (1) cannot be used for establishing discrete
numerical models. If replacing the Delta function δ(x − x′)
by a smoothing function W(x − x′, h) with a finite spatial
dimension h, the kernel approximation of f (x), 〈f (x)〉, be-
comes

〈f (x)〉 .=
∫

�

f (x′)W(x − x′, h)dx′, (3)



Smoothed Particle Hydrodynamics (SPH): an Overview and Recent Developments 29

where h is the smoothing length defining the influence or
support area of the smoothing function W . Note that as long
as W is not the Dirac delta function, the integral representa-
tion shown in (3) can only be an approximation, except for
special cases. Therefore (3) can be written as

〈f (x)〉 =
∫

�

f (x ′)W(x − x′, h)dx′. (4)

A smoothing function W is usually chosen to be an even
function for reasons given later in Sect. 3. It should also sat-
isfy a number of conditions. The first one is the normaliza-
tion condition that states
∫

�

W(x − x′, h)dx′ = 1. (5)

This condition is also termed as unity condition since the
integration of the smoothing function produces the unity.

The second condition is the Delta function property that
is observed when the smoothing length approaches zero

lim
h→0

W(x − x′, h) = δ(x − x′). (6)

The third condition is the compact condition

W(x − x′, h) = 0 when |x − x′| > κh, (7)

where κ is a constant related to the smoothing function for a
particle at x, and κh defines the effective (non-zero) area of
the smoothing function. This effective area is usually called
as the support domain of the smoothing function for a point
at x (or the support domain of that point). Using this com-
pact condition, integration over the entire problem domain
is localized as integration over the support domain of the
smoothing function. Therefore, the integration domain �

can be the same as the support domain.
In the SPH literatures, the kernel approximation is often

said to have h2 accuracy or second order accuracy [46, 47,
49, 75–77]. The observation can be obtained easily using
Taylor series expansion on (4). Note from (7) that the sup-
port domain of the smoothing function is |x′ − x| ≤ κh, the
errors in the SPH integral representation can be roughly esti-
mated by using the Taylor series expansion of f (x′) around
x in (4). If f (x) is differentiable, we can get

〈f (x)〉 =
∫

�

[f (x) + f ′(x)(x ′ − x) + r((x ′ − x)2)]

× W(x − x′, h)dx′

= f (x)

∫
�

W(x − x′, h)dx′ + f ′(x)

∫
�

(x′ − x)

× W(x − x′, h)dx′ + r(h2), (8)

where r stands for the residual. Note that W is an even func-
tion with respect to x, and (x ′ − x)W(x − x′, h) should be
an odd function. Hence we should have
∫

�

(x′ − x)W(x − x′, h)dx′ = 0. (9)

Using (5) and (9), (8) becomes

〈f (x)〉 = f (x) + r(h2). (10)

It is clear that SPH kernel approximation of an arbitrary field
function is of second order accuracy.

2.2 Kernel Approximation of Derivatives

The approximation for the spatial derivative ∇ · f (x) is ob-
tained simply by substituting f (x) with ∇ · f (x) in (4),
which gives

〈∇ · f (x)〉 =
∫

�

[∇ · f (x′)]W(x − x′, h)dx′, (11)

where the divergence in the integral is operated with respect
to the primed coordinate. Considering

[∇ · f (x′)]W(x − x′, h)

= ∇ · [f (x′)W(x − x′, h)]
− f (x′) · ∇[W(x − x′, h)], (12)

the following equation is obtained

∇ · f (x) =
∫

�

∇ · [f (x′)W(x − x′, h)]dx′

−
∫

�

f (x′) · ∇[W(x − x′, h)]dx′. (13)

The first integral on the right hand side (RHS) of (13) can
be converted using the divergence theorem into an integral
over the surface S of the domain of the integration, �, as

〈∇ · f (x)〉 =
∫

S

f (x′)W(x − x′, h) · 	ndS

−
∫

�

f (x′) · ∇W(x − x′, h)dx′, (14)

where 	n is the unit vector normal to the surface S. Since the
smoothing function W is usually defined to have compact
support (see (7)), the value of W on the surface of the inte-
gral in (14) is zero in SPH. Therefore, the surface integral
on the right hand side of (14) is also zero. Hence, the kernel
approximation of the derivatives can be written from (14) as

〈∇ · f (x)〉 = −
∫

�

f (x′) · ∇W(x − x′, h)dx′. (15)
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It is clear that the differential operation on a function is
transformed into a differential operation on the smoothing
function. In other words, the SPH kernel approximation of
the derivative of a field function allows the spatial gradient
to be determined from the values of the function and the
derivatives of the smoothing function W , rather than from
the derivatives of the function itself.

Kernel approximation of higher order derivatives can be
obtained in a similar way by substituting f (x) with the cor-
responding derivatives in (4), using integration by parts, di-
vergence theorem and some trivial transformations. Another
approach is to repeatedly use (15) to obtain the kernel ap-
proximation of the higher order derivatives, since any higher
order derivative can always be regarded as the first order
derivative of its next lower order derivative.

Following similar analyses based on Taylor series expan-
sion, it is easy to show that the kernel approximation of the
derivative is also of second order accuracy. Since the SPH
kernel approximations for a field function and its derivatives
are of second order accuracy, that is why the SPH method
has usually been referred as a method of second order accu-
racy. However, (10) is not always true because (5) and (9)
are sometimes not satisfied. For example, in a 1D problem
space, if the support domain is within the problem domain
under consideration, the integration of the smoothing func-
tion is unity (see (5)), and the integration of the first moment
of the smoothing function (see (9)) is zero. Also the sur-
face integral in (14) is zero. Hence the SPH kernel approx-
imations are of second order accuracy, and this is shown in
Fig. 1.

However, there are scenarios in which the support do-
main intersects with the problem domain boundary, as
shown in Fig. 2. Therefore, the smoothing function W

is truncated by the boundary, and the integration of the
smoothing function is no longer unity. The integration of the
first moment term of the smoothing function and the surface
integral in (14) are also no longer zero. At such scenarios,
the SPH kernel approximations are not of second order ac-
curacy.

2.3 Particle Approximation

The second step of SPH method is the particle approxima-
tion, which involves representing the problem domain using
a set of particles, and then estimating field variables on this
set of particles. Considering a problem domain � filled with
a set of particles (usually arbitrarily distributed, see Fig. 3
for illustration in a two-dimensional domain). These parti-
cles can either be centered particles initially generated us-
ing existing mesh generation tools or concentrated particles
initially generated using some kind of space discretization
model such as the particle-fill model in AUTODYN [78].
The state of the system is represented by these particles,

Fig. 1 Schematic illustration of the scenarios in which the support
domain is located within the problem domain. For such scenarios, the
SPH kernel approximations are of second order accuracy

Fig. 2 Schematic illustration of the scenarios in which the support
domain intersects with the problem domain. For such scenarios, the
SPH kernel approximations are not exactly of second order accuracy

Fig. 3 SPH particle approximations in a two-dimensional problem do-
main � with a surface S. W is the smoothing function that is used to
approximate the field variables at particle i using averaged summa-
tions over particles j within the support domain with a cut-off distance
of κhi

each associated with field properties. These particles can be
used not only for integration, interpolation or differencing,
but also for representing the material. The volume of a sub-
section is lumped on the corresponding particle. Therefore
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one particle i is associated with a fixed lumped volume �Vi

without fixed shape. If the particle mass and density are con-
cerned, the lumped volume can also be replaced with the
corresponding mass to density ratio mi/ρi . These particles
can be fixed in an Eulerian frame or move in a Lagrangian
frame.

After representing the computational domain with a finite
number of particles, the continuous form of kernel approx-
imation expressed in (4) can be written in discretized form
of a summation of the neighboring particles as follows

〈f (x)〉 =
N∑

j=1

mj

ρj

f (xj )W(x − xj , h), (16)

where N is the total number of particles within the influence
area of the particle at x. It is the total number of particles
that are within the support domain which has a cut-off dis-
tance, characterized by the smoothing length, h, multiplied
by a scalar constant κ . This procedure of summation over the
neighboring particles is referred to as particle approxima-
tion, which states that the value of a function at a particle can
be approximated by using the average of the values of the
function at all the particles in the support domain weighted
by the smoothing function. Following the same procedure,
the particle approximation of a derivative can be obtained as

〈∇ · f (x)〉 = −
N∑

j=1

mj

ρj

f (xj ) · ∇W(x − xj , h), (17)

where the gradient ∇W in the above equation is evaluated at
particle j . Equation (17) states that the value of the gradient
of a function at a particle located at x can be approximated
by using the summation of those values of the function at
all the particles in the support domain weighted by the gra-
dient of the smoothing function. The particle approximation
in (16) and (17) converts the continuous form of kernel ap-
proximation of a field function and its derivatives to the dis-
crete summations over a set of particles. The use of parti-
cle summations to approximate the integral is, in fact, a key
approximation that makes the SPH method simple without
using a background mesh for numerical integration, and it is
also the key factor influencing the solution accuracy of the
SPH method.

One important aspect is that the particle approximation
in the SPH method introduces the mass and density of the
particle into the equations. This can be conveniently ap-
plied to hydrodynamic problems in which the density is a
key field variable. This is probably one of the major reasons
for the SPH method being particularly popular for dynamic
fluid flow problems. If the SPH particle approximation is
applied to solid mechanics problems, special treatments are
required. One of the ways is to use the SPH approximation
to create shape functions, and to establish the discrete sys-
tem equations [4].

The particle approximation is, however, related to some
numerical problems inherent in the SPH method, such as
the particle inconsistency and the tensile instability, as will
be addressed in the following sections. One basic reason
is that the discrete summation is only taken over the parti-
cles themselves (collocation). In general, in meshfree meth-
ods, to achieve stability and accuracy, the number of sam-
pling points for integration should be more than the field
nodes (particles). This is especially true for meshfree meth-
ods based on weak forms for solid mechanics problems [4].
Otherwise, it may (not always) lead to some kind of insta-
bility problems.

2.4 Techniques for Deriving SPH Formulations

By using the above-described procedure of kernel approx-
imation and particle approximation, SPH formulations for
partial differential equations can always be derived. There
are in fact a number of ways to derive SPH formulation of
PDEs. Benz used one approach to derive the SPH equations
for PDEs that is to multiply each term in the PDEs with the
smoothing function, and integrate over the volume with the
use of integration by parts and Taylor expansions [79]. Mon-
aghan employed a straightforward approach of directly us-
ing (16) and (17) [49]. In that approach, the following two
identities are employed to place the density inside the gradi-
ent operator,

∇ · f (x) = 1

ρ
[∇ · (ρf (x)) − f (x) · ∇ρ], (18)

∇ · f (x) = ρ

[
∇ ·

(
f (x)

ρ

)
+ f (x)

ρ2
· ∇ρ

]
. (19)

The above two identities may be substituted into the integral
in (11). The same procedure of the particle approximation
to obtain (17) is applied to each gradient term on the right
hand side of (18) and (19). Note that each expression at the
outside of every gradient term is evaluated at the particle
itself, the results from (18) and (19) for the divergence of
f (x) at particle i are obtained as

〈∇ · f (xi )〉 = 1

ρi

[
N∑

j=1

mj [f (xj ) − f (xi )] · ∇iWij

]
, (20)

and

〈∇ · f (xi )〉

= ρi

[
N∑

j=1

mj

[(
f (xj )

ρ2
j

)
+

(
f (xi )

ρ2
i

)]
· ∇iWij

]
. (21)

One of the good features for the above two equations is
that the field function f (x) appears pairwisely and involves
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asymmetric and symmetric SPH formulations. These asym-
metric and symmetric formulations can help to improve the
numerical accuracy in SPH simulations [6, 49, 56].

Besides the above-mentioned two identities, some other
rules of operation can be convenient in deriving the SPH
formulations for complex system equations [6]. For exam-
ple, for two arbitrary functions of field variables f1 and f2,
the following rules exist.

〈f1 ± f2〉 = 〈f1〉 ± 〈f2〉, (22)

〈f1f2〉 = 〈f1〉〈f2〉. (23)

Hence, an SPH approximation of the sum of functions
equals to the sum of the SPH approximations of the indi-
vidual function, and an SPH approximation of a product of
functions equals to the product of the SPH approximations
of the individual functions.

If f1 is a constant denoted by c, we should have

〈cf2〉 = c〈f2〉. (24)

It is clear that the SPH approximation operator is a linear
operator. It is also easy to show that the SPH approximation
operator is commutative, i.e.,

〈f1 + f2〉 = 〈f2 + f1〉, (25)

and

〈f1f2〉 = 〈f2f1〉. (26)

For convenience, the SPH approximation operator “〈 〉” is
omitted in later sections.

2.5 SPH Formulations for Navier-Stokes (N-S) Equations

Using the afore-mentioned kernel and particle approxima-
tion techniques with necessary numerical tricks, it is possi-
ble to derive SPH formulations for partial differential equa-
tions governing the physics of fluid flows. For example, for
Navier-Stokes equations controlling the general fluid dy-
namic problems, we have
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dρ
Dt

= −ρ ∂vβ

∂xβ ,

Dvα

Dt
= 1

ρ
∂σαβ

∂xβ + F,

De
Dt

= σαβ

ρ
∂vα

∂xβ ,

(27)

where the Greek superscripts α and β are used to denote
the coordinate directions, the summation in the equations is
taken over repeated indices, and the total time derivatives are
taken in the moving Lagrangian frame. The scalar density
ρ, and internal energy e, the velocity component vα , and
the total stress tensor σαβ are the dependent variables. F is
the external forces such as gravity. The spatial coordinates

xα and time t are the independent variables. The total stress
tensor σαβ is made up of two parts, one part of isotropic
pressure p and the other part of viscous stress τ , i.e., σαβ =
−pδαβ +ταβ . For Newtonian fluids, the viscous shear stress
should be proportional to the shear strain rate denoted by ε

through the dynamic viscosity μ, i.e., ταβ = μεαβ , where

εαβ = ∂vβ

∂xα
+ ∂vα

∂xβ
− 2

3
(∇ · v)δαβ.

Substituting the SPH approximations for a function and
its derivative (as shown in (16) and (17)) to the N-S equa-
tions, the SPH equations of motion for the N-S equations
can be written as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Dρi

Dt
= ∑N

j=1 mjv
β
ij

∂Wij

∂x
β
i

,

Dvα
i

Dt
= −∑N

j=1 mj

(
σ

αβ
i

ρ2
i

+ σ
αβ
j

ρ2
j

)
∂Wij

∂x
β
i

+ Fi,

Dei

Dt
= 1

2

∑N
j=1 mj

(
pi

ρ2
i

+ pj

ρ2
j

)
v

β
ij

∂Wij

∂x
β
i

+ μi

2ρi
ε
αβ
i ε

αβ
i ,

(28)

where vij = vi − vj . Equation (28) is a set of commonly
used SPH equations for the N-S equations. It should be
noted that by using different numerical tricks, it is possi-
ble to get other different forms of SPH equations for the
same partial differential equations. The obtained SPH for-
mulations may have special features and advantages suitable
for different applications [6]. One typical example is the ap-
proximation of density. If the field function is the density,
(16) can be re-written as

ρi =
N∑

j=1

mjWij . (29)

This is another approach to obtain density directly from the
SPH summation of the mass of all particles in the support
domain of a given particle, rather than from the continuum
equation. Compared to the SPH formulations on density
change in (28), this summation density approach conserves
mass exactly, but suffers from serious boundaries deficiency
due to the particle inconsistency. A frequently used way to
remediate the boundaries deficiency is the following normal-
ization form by the summation of the smoothing function
itself [52, 53]

ρi =
∑N

j=1 mjWij∑N
j=1(

mj

ρj
)Wij

. (30)

3 SPH Smoothing Function

3.1 Review on Commonly Used Smoothing Functions

One of the central issues for meshfree methods is how to ef-
fectively perform function approximation based on a set of
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nodes scattered in an arbitrary manner without using a pre-
defined mesh or grid that provides the connectivity of the
nodes. In the SPH method, the smoothing function is used
for kernel and particle approximations. It is of utmost im-
portance in the SPH method as it determines the pattern to
interpolate, and defines the cut-off distance of the influenc-
ing area of a particle.

Many researchers have investigated the smoothing ker-
nel, hoping to improve the performance of the SPH method,
and/or to generalize the requirements for constructing the
smoothing kernel function. Fulk numerically investigated a
number of smoothing kernel functions in one-dimensional
space, and the obtained results are basically valid for regu-
larly distributed particles [39, 75]. Swegle et al. revealed the
tensile instability, which is closely related to the smooth-
ing kernel function [45]. Morris studied the performances
of several different smoothing functions, and found that by
properly selecting the smoothing function, the accuracy and
stability property of the SPH simulation can be improved
[46, 80]. Omang provided investigations on alternative ker-
nel functions for SPH in cylindrical symmetry [81]. Jin and
Ding investigated the criterions for smoothed particle hy-
drodynamics kernels in stable field [82]. Capuzzo-Dolcetta
gave a criterion for the choice of the interpolation ker-
nel in SPH [83]. Cabezon and his co-workers proposed a
one-parameter family of interpolating kernels for SPH stud-
ies [84].

Different smoothing functions have been used in the SPH
method as shown in published literatures. Various require-
ments or properties for the smoothing functions have been
discussed. Major properties or requirements are now sum-
marized and described in the following discussion.

1. The smoothing function must be normalized over its sup-
port domain (Unity)
∫

�

W(x − x′, h)dx′ = 1. (31)

This normalization property ensures that the integral of
the smoothing function over the support domain to be
unity. It can be shown in the next section that it also en-
sures the zero-th order consistency (C0) of the integral
representation of a continuum function.

2. The smoothing function should be compactly supported
(Compact support), i.e.,

W(x − x′) = 0, for |x − x′| > κh. (32)

The dimension of the compact support is defined by the
smoothing length h and a scaling factor κ , where h is
the smoothing length, and κ determines the spread of the
specified smoothing function. |x − x′| ≤ κh defines the
support domain of the particle at point x. This compact
supportness property transforms an SPH approximation

from a global operation to a local operation. This will
later lead to a set of sparse discretized system matrices,
and therefore is very important as far as the computa-
tional efforts are concerned.

3. W(x − x′) ≥ 0 for any point at x′ within the support do-
main of the particle at point x (Positivity). This property
states that the smoothing function should be non-negative
in the support domain. It is not mathematically necessary
as a convergent condition, but it is important to ensure
a meaningful (or stable) representation of some physi-
cal phenomena. A few smoothing functions used in some
literatures are negative in parts of the support domain.
However in hydrodynamic simulations, negative value of
the smoothing function can have serious consequences
that may result in some unphysical parameters such as
negative density and energy.

4. The smoothing function value for a particle should be
monotonically decreasing with the increase of the dis-
tance away from the particle (Decay). This property is
based on the physical consideration in that a nearer par-
ticle should have a bigger influence on the particle under
consideration. In other words, with the increase of the
distance of two interacting particles, the interaction force
decreases.

5. The smoothing function should satisfy the Dirac delta
function condition as the smoothing length approaches
zero (Delta function property)

lim
h→0

W(x − x′, h) = δ(x − x′). (33)

This property makes sure that as the smoothing length
tends to be zero, the approximation value approaches the
function value, i.e. 〈f (x)〉 = f (x).

6. The smoothing function should be an even function
(Symmetric property). This means that particles from
same distance but different positions should have equal
effect on a given particle. This is not a very rigid condi-
tion, and it is sometimes violated in some meshfree par-
ticle methods that provide higher consistency.

7. The smoothing function should be sufficiently smooth
(Smoothness). This property aims to obtain better ap-
proximation accuracy. For the approximations of a func-
tion and its derivatives, a smoothing function needs to be
sufficiently continuous to obtain good results. A smooth-
ing function with smoother value of the function and
derivatives would usually yield better results and better
performance in numerical stability. This is because the
smoothing function will not be sensitive to particle dis-
order, and the errors in approximating the integral inter-
polants are small, provided that the particle disorder is
not extreme [6, 49, 75].

Any function having the above properties may be em-
ployed as SPH smoothing functions, and many kinds of
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smoothing functions have been used. Lucy in the original
SPH paper [36] used a bell-shaped function

W(x − x′, h) = W(R,h)

= αd

{
(1 + 3R)(1 − R)3, R ≤ 1,

0, R > 1,
(34)

where αd is 5/4h, 5/πh2 and 105/16πh3 in one-, two- and
three-dimensional space, respectively, so that the condition
of unity can be satisfied for all the three dimensions. R is
the relative distance between two points (particles) at points
x and x′, R = r

h
= |x−x′|

h
, where r is the distance between

the two points.
Gingold and Monaghan in their original paper [37] se-

lected the following Gaussian kernel to simulate the non-
spherical stars

W(R,h) = αde−R2
, (35)

where αd is 1/π1/2h, 1/πh2 and 1/π3/2h3, respectively,
in one-, two- and three-dimensional space, for the unity
requirement. The Gaussian kernel is sufficiently smooth
even for high orders of derivatives, and is regarded as a
“golden” selection since it is very stable and accurate es-
pecially for disordered particles. It is, however, not really
compact, as it never goes to zero theoretically, unless R ap-
proaches infinity. Because it approaches zero numerically
very fast, it is practically compact. Note that it is computa-
tionally more expensive since it can take a longer distance
for the kernel to approach zero. This can result in a large
support domain with more particles for particle approxima-
tions.

The most frequently used smoothing function may be the
cubic B-spline function, which was originally used by Mon-
aghan and Lattanzio [85]

W(R,h) = αd ×

⎧⎪⎨
⎪⎩

2
3 − R2 + 1

2R3, 0 ≤ R < 1,
1
6 (2 − R)3, 1 ≤ R < 2,

0, R ≥ 2.

(36)

In one-, two- and three-dimensional space, αd = 1/h,
15/7πh2 and 3/2πh3, respectively. The cubic spline func-
tion has been the most widely used smoothing function in
the emerged SPH literatures since it closely resembles a
Gaussian function while having a narrower compact sup-
port. However, the second derivative of the cubic spline is
a piecewise linear function, and accordingly, the stability
properties can be inferior to those of smoother kernels.

Morris has introduced higher order (quartic and quintic)
splines that are more closely approximating the Gaussian
and more stable [46, 80]. The quartic spline is

W(R,h)

= αd ×

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(R + 2.5)4 − 5(R + 1.5)4 + 10(R + 0.5)4,

0 ≤ R < 0.5,

(2.5 − R)4 − 5(1.5 − R)4,

0.5 ≤ R < 1.5,

(2.5 − R)4, 1.5 ≤ R < 2.5,

0, R > 2.5,

(37)

where αd is 1/24h in one-dimensional space. The quintic
spline is

W(R,h) = αd ×

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(3 − R)5 − 6(2 − R)5 + 15(1 − R)5,

0 ≤ R < 1,

(3 − R)5 − 6(2 − R)5,

1 ≤ R < 2,

(3 − R)5, 2 ≤ R < 3,

0, R > 3,

(38)

where αd is 120/h, 7/478πh2 and 3/359πh3 in one-, two-
and three-dimensional space, respectively.

Johnson et al. used the following quadratic smoothing
function to simulate high velocity impact problems [86]

W(R,h) = αd

(
3

16
R2 − 3

4
R + 3

4

)
, 0 ≤ R ≤ 2, (39)

where in one-, two- and three-dimensional space, αd = 1/h,
2/πh2 and 5/4πh3, respectively. Unlike other smoothing
functions, the derivative of this quadratic smoothing func-
tion always increases as the particles move closer, and al-
ways decreases as they move apart. This was regarded by the
authors as an important improvement over the cubic spline
function, and it was reported to relieve the problem of com-
pressive instability.

Some higher order smoothing functions that are devised
from lower order forms have been constructed, such as the
super-Gaussian kernel [85]

W(R,h) = αd

(
3

2
− R2

)
e−R2

, 0 ≤ R ≤ 2, (40)

where αd is 1/
√

π in one-dimensional space. One disadvan-
tage of the high order smoothing function is that the kernel
is negative in some region of its support domain. This may
lead to unphysical results for hydrodynamic problems [75].

The smoothing function has been studied mathematically
in detail by Liu and his co-workers. They proposed a system-
atical way to construct a smoothing function that may meet
different needs [38]. A new quartic smoothing function has
been constructed to demonstrate the effectiveness of the ap-
proach for constructing a smoothing function as follows.

W(R,h) = αd

{
( 2

3 − 9
8R2 + 19

24R3 − 5
32R4), 0 ≤ R ≤ 2,

0, R > 2,
(41)
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where αd is 1/h, 15/7πh2 and 315/208πh3 in one-, two-
and three-dimensional space, respectively. Note that the cen-
tre peak value of this quartic smoothing function is defined
as 2/3. The quartic smoothing function behaves very much
like the widely used cubic B-spline function given in (36),
but has only one piece, and hence is much more conve-
nient and efficient to use. More discussions on this quartic
smoothing function will give in the next section.

3.2 Generalizing Constructing Conditions

Major requirements of an SPH smoothing function have
been addressed in Sect. 3.1. Some of these requirements can
be derived by conducting Taylor series analysis. This analy-
sis is carried out at the stage of the SPH kernel approxi-
mation for a function and its derivatives. It shows that, to
exactly approximate a function and its derivatives, certain
conditions need to be satisfied. These conditions can then be
used to construct the smoothing functions.

Considering the SPH kernel approximation for a field
function f (x) as show in (4), if f (x) is sufficiently smooth,
applying Taylor series expansion of f (x′) in the vicinity of
x yields

f (x′) = f (x) + f ′(x)(x ′ − x) + 1

2
f ′′(x)(x ′ − x)2 + · · ·

=
n∑

k=0

(−1)khkf (k)(x)

k!
(

x − x′

h

)k

+ rn

(
x − x′

h

)
, (42)

where rn is the remainder of the Taylor series expansion.
Substituting (42) into (4) leads to

f (x) =
n∑

k=0

Akf
(k)(x) + rn

(
x − x′

h

)
, (43)

where

Ak = (−1)khk

k!
∫

�

(
x − x′

h

)k

W(x − x′, h)dx′. (44)

Comparing the LHS with the RHS of (43), in order for
f (x) to be approximated to n-th order, the coefficients Ak

must equal to the counterparts for f (k)(x) at the LHS of
(43). Therefore, after trivil transformation, the following
conditions for the smoothing function W can be obtained
as follows

M0 = ∫
�

W(x − x′, h)dx′ = 1

M1 = ∫
�
(x − x′)W(x − x′, h)dx′ = 0

M2 = ∫
�
(x − x′)2W(x − x′, h)dx′ = 0

...

Mn = ∫
�
(x − x′)nW(x − x′, h)dx′ = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (45)

where Mk is the k-th moments of the smoothing function.
Note that the first equation in (45) is, in fact, the unity con-
dition expressed in (31), and the second equation in (45)
stands for the symmetric property. Satisfaction of these two
conditions ensures the first order consistency for the SPH
kernel approximation for a function.

Also performing Taylor series analysis for the SPH ker-
nel approximation of the derivatives of a field function f (x),
using the concept of integration by parts, and divergence the-
orem with some trivial transformation, the following equa-
tions

W(x − x′, h)|S = 0 (46)

and

M ′
0 = ∫

�
W ′(x − x′, h)dx′ = 0

M ′
1 = ∫

�
(x − x′)W ′(x − x′, h)dx′ = 1

M ′
2 = ∫

�
(x − x′)2W ′(x − x′, h)dx′ = 0

...

M ′
n = ∫

�
(x − x′)nW ′(x − x′, h)dx′ = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(47)

can be obtained. Equation (46) actually specifies that the
smoothing function vanishes on the surface of the support
domain. This is compatible to the compactness condition of
the smoothing function. Equation (47) defines the conditions
with which the derivatives of the smoothing function should
be satisfied. Note that (45) and (47) are actually compatible
considering integration by parts, divergence theorem and the
boundary value vanishing effects (see (46)) of the smoothing
function.

Performing Taylor series analysis on the SPH kernel ap-
proximation for the second derivatives, similar equations
can be obtained. Except for the requirements on the sec-
ond derivatives of the momentums, the first derivative of
the smoothing function also needs to vanish on the surface,
which is

W ′(x − x′, h)|S = 0. (48)

Equations (45)–(48) can be used to construct smoothing
functions. It can be seen that the conditions of smoothing
functions can be classified into two groups. The first group
shows the ability of a smoothing function to reproduce poly-
nomials. Satisfying the first group, the function can be ap-
proximated to n-th order accuracy. The second group defines
the surface values of a smoothing function as well as its first
derivatives, and is the requirements of the property of com-
pact support for the smoothing function and its first deriva-
tive. Satisfying these conditions, the first two derivatives of
the function can be exactly approximated to the n-th order.
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3.3 Constructing SPH Smoothing Functions

By using above-mentioned conditions, it is possible to have
a systematic way to construct the SPH smoothing functions.
If the smoothing function is assumed to be a polynomial
dependent only on the relative distance of the concerned
points, it can be assumed to have the following form in the
support domain with an influence width of κh.

W(x − x′, h) = W(R) = a0 + a1R + a2R
2 + · · · + anR

n.

(49)

It is clear that a smoothing function in the above-
mentioned form is a distance function since it depends on the
relative distance. It is easy to show that for the second deriv-
ative of the smoothing function to exist, a1 should vanish.
Substituting this polynomial form smoothing function into
the conditions (see (45)–(48)), the parameters a0, a2, . . . , an

can be calculated from the resultant linear equations, and
then the smoothing function can be determined.

There are several issues that need further consideration.
Firstly, a smoothing function derived from this set of condi-
tions (see (45)) will not necessarily be positive in the entire
support domain, especially when high order reproducibil-
ity is required. Such a negative smoothing function may re-
sult in unphysical solutions, for example, negative density
(mass) and negative energy. For this reason, smoothing func-
tions used in SPH literatures are generally non-negative for
CFD problems. On the other hand, for the even moments
(k = 2,4,6, . . .) to be zero, a smoothing function has to
be negative in some parts of the region. This implies that
one cannot have both non-negativity and high-order repro-
ducibility at the same time.

Secondly, in constructing a smoothing function, the cen-
ter peak value is a factor that needs to be considered. The
center peak value of a smoothing function is very important
since it determines how much the particle itself will con-
tribute to the approximation. Revisiting (45), if a positive
smoothing function is used, the highest order of accuracy
for the function approximation is second order. Therefore,
the second momentum (M2 = ∫

�
(x −x′)2W(x −x′, h)dx′)

can be used as a rough indicator to measure the accuracy
of the kernel approximation. The smaller the second mo-
ment M2 is, the more accurate the kernel approximation is.
The center peak value of a smoothing function is closely
related to M2. A positive smoothing function with a large
center peak value will have a smaller second moment M2.
This implies that a smoothing function is closer to the Delta
function, and therefore is more accurate in terms of kernel
approximations.

Thirdly, in some circumstances, a piecewise smooth-
ing function is preferable since the shape of the piecewise
smoothing function is easier to be controlled by changing

the number of the pieces and the locations of the connection
points. For example, consider the general form of a smooth-
ing function with two pieces,

W(R) =
⎧⎨
⎩

W1(R), 0 ≤ R < R1,
W2(R), R1 ≤ R < R2,
0 R2 ≤ R.

(50)

The function itself and the first two derivatives at the
connection points should be continuous, i.e., W1(R1) =
W2(R1), W ′

1(R1) = W ′
2(R1) and W ′′

1 (R1) = W ′′
2 (R1). Con-

sidering the requirements at these points as well as the com-
pact support property, one possible form of the smoothing
function is

W(R) = αd

⎧⎨
⎩

b1(R1 − R)n + b2(R2 − R)n, 0 ≤ R < R1,

b2(R2 − R)n, R1 ≤ R < R2,

0, R2 ≤ R.

(51)

It is also feasible to construct smoothing function with more
pieces using similar expressions.

To show the effectiveness of this approach to construct-
ing general SPH smoothing functions Liu et al. [38] derived
a new quartic smoothing function using the following con-
ditions

• the unity condition,
• compact support of the smoothing function,
• compact support of the first derivative of the smoothing

function,
• centre peak value.

The constructed smoothing function is given as W(R,h) =
αd( 2

3 − 9
8R2 + 19

24R3 − 5
32R4), for 0 ≤ R ≤ 2, where αd is

1/h, 15/7πh2 and 315/208πh3 in one-, two- and three-
dimensional space, respectively. Note that the centre peak
value of this quartic smoothing function is defined as 2/3.

As defined, this quartic function satisfies the normaliza-
tion condition, while the function itself and its first deriva-
tive have compact support. It is very close to the most com-
monly used cubic spline (see (36)) with a same center peak
value of 2/3, and monotonically decreases with the increase
of the distance as show in Fig. 4. However, this quartic func-
tion produces a smaller second momentum than the cubic
spline function, and therefore can produce better accuracy
for kernel approximation. Also this quartic smoothing func-
tion has a smoother second derivative than the cubic spline
smoothing function, thus the stability properties should be
superior to those of the cubic spline function, as reported by
many researchers that a smoother second derivative can lead
to less instability in SPH simulation [80, 87].

4 Consistency

In early studies, the SPH method has usually been reported
to have second order accuracy. This is reasonable, as the ker-
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Fig. 4 The quartic smoothing function constructed by Liu et al. by us-
ing the smoothing function constructing conditions [38]. The shapes of
the quartic function and its first derivative are very close to the shapes
of the cubic spline function and its first derivative. However, this one
piece smoothing function is expected to produce better accuracy as it
has smaller second momentum. It is also expected to be more stable
since it has a continuous second derivative

nel approximation of a field function has a remainder of sec-
ond order (see (8)). However, the kernel approximation of
a function and/or its derivatives may not necessarily be of
second order accuracy as the smoothing function may not
be an even function since it is truncated when approaching
the boundary region. Moreover, high order accuracy of the
kernel approximation does not necessarily mean high order
accuracy of the SPH simulations, as it is the particle approx-
imation rather than the kernel approximation that eventually
determines the accuracy of the SPH simulations.

Following the Lax-Richtmyer equivalence theorem, we
know that if a numerical model is stable, the convergence of
the solution to a well-posed problem will then be determined
by the consistency of the function approximation. Therefore
the consistency of SPH approximation is crucial. In finite
element method, to ensure the accuracy and convergence of
an FEM approximation, the FEM shape function must sat-
isfy a certain degree of consistency. The degree of consis-
tency can be characterized by the order of the polynomial
that can be exactly reproduced by the approximation using
the shape function. In general, if an approximation can re-
produce a polynomial up to k-th order exactly, the approxi-
mation is said to have k-th order consistency or Ck consis-
tency. The concept of consistency from traditional finite el-
ement methods can also be used for meshfree particle meth-
ods such as smoothed particle hydrodynamics [3, 6, 13, 72,
74, 88]. Therefore it is similarly feasible to investigate the
consistency of SPH kernel and particle approximations in
reproducing a polynomial by using the smoothing function.

4.1 Consistency in Kernel Approximation (Kernel
Consistency)

For a constant (0th order polynomial) function f (x) = c

(where c is a constant) to be exactly reproduced by the SPH
kernel approximation, following (1), we require

f (x) =
∫

cW(x − x′, h)dx′ = c, (52)

or
∫

W(x − x′, h)dx′ = 1. (53)

Equation (53) is exactly the normalization condition de-
scribed previously.

Further, for a linear function f (x) = c0 + c1x (where c0

and c1 are constants) to be exactly reproduced, we must have

f (x) =
∫

(c0 + c1x
′)W(x − x′, h)dx′ = c0 + c1x. (54)

Using (52), (54) can be simplified as
∫

x′W(x − x′, h)dx′ = x. (55)

Multiplying x to both side of (53), we have the following
identity
∫

xW(x − x′, h)dx′ = x. (56)

Subtracting (55) from the above identity yields
∫

(x − x′)W(x − x′, h)dx′ = 0. (57)

Equation (57) is the symmetric condition described in
Sect. 3.1.

More generally, by performing Taylor series analy-
ses on the kernel approximation of a function f (x) (=∫

f (x′)W(x − x′, h)dx′) in a one-dimensional space, we
have already obtained a set of requirements of the smooth-
ing function in Sect. 3.2, as expressed in (45). Equations (53)
(normalization condition) and (57) (symmetric condition)
are actually components in (45), which describes the 0th
and 1st moments.

For the integrations expressed in (45), the integration do-
main is assumed to be a fully continuous support domain
that is not truncated by the boundaries. Equation (45) states
the requirements on the moments of a smoothing function to
reproduce certain order of polynomials.

Equation (45) can thus be used as an approximation ac-
curacy indicator. If a smoothing function satisfies (45), a
function can be approximated to n-th order accuracy. Fur-
thermore the 0th moment in (45) states the normalization
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condition, and the 1st moment states the symmetry property
of the smoothing function.

Similar to the consistency concept in the traditional FEM,
if an SPH approximation can reproduce a polynomial of up
to nth order exactly, the SPH approximation is said to have
nth order or Cn consistency. If the consistency of an SPH
kernel approximation in continuous form is termed as ker-
nel consistency, the kernel consistency of an SPH kernel ap-
proximation is of nth order when the smoothing function
satisfies (45). Therefore the expressions in (45) are also the
kernel consistency conditions of the smoothing function for
an SPH kernel approximation.

Note that if the SPH kernel approximations are carried
out for regions truncated by boundaries, constant and lin-
ear functions can not be reproduced exactly since (53) and
(57) are not satisfied for these regions. Therefore we can
conclude that, since a conventional smoothing function sat-
isfies the normalization and symmetric conditions, the con-
ventional SPH method has up to C1 consistency for the inte-
rior regions. However, for the boundary regions, it even does
not have C0 kernel consistency.

4.2 Consistency in Particle Approximation (Particle
Consistency)

Satisfying the consistency conditions at the kernel approxi-
mation stage does not necessarily mean that the discretized
SPH model will have such a consistency. This is because
such a consistency can be distorted by the particle approxi-
mation process in discrete SPH model. Therefore, the con-
sistency analysis should be conducted for the discrete SPH
model in the particle approximation process, and this con-
sistency can be termed as particle consistency.

The discrete counterparts of the constant and linear con-
sistency conditions as expressed in (53) and (57) are

N∑
j=1

W(x − xj , h)�vj = 1, (58)

and

N∑
j=1

(x − xj )W(x − xj , h)�vj = 0. (59)

These discretized consistency conditions are not satisfied
in general. One obvious and simple example is the particle
approximations at the boundary particles (Fig. 5a). Even for
uniform particle distribution, due to the unbalanced particles
contributing to the discretized summation, the LHS of (58)
is smaller than 1 and the LHS of (59) will not vanish, due
to the truncation of the smoothing function by the bound-
ary. For cases with irregularly distributed particles (Fig. 5b),
it is also easy to verify that even for the interior particles

Fig. 5 SPH particle approximations in one-dimensional cases. (a) Par-
ticle approximation for a particle whose support domain is truncated by
the boundary. (b) Particle approximation for a particle with irregular
particle distribution in its support domain

whose support domains are not truncated, the constant and
linear consistency conditions in discretized forms may not
be exactly satisfied. Therefore the original SPH method does
not even have C0 consistency in the particle approximation.
It is clear that the inconsistency caused by the particle ap-
proximation is closely related to the corresponding kernel
approximation and particles involved in the approximation.
Such an inconsistency problem results in directly the solu-
tion inaccuracy in the original SPH method.

Besides the particle approximation features associated
with boundary particles or irregular distributed particles, the
choice of the smoothing length is also important in the par-
ticle approximation process. In a one-dimensional domain
with the cubic spline smoothing function, it is easy to verify
that for uniformly distributed interior particles, the original
SPH method has C0 particle consistency if the smoothing
length is taken exactly as the particle spacing (h = �x) since
(58) is satisfied. However, varying the smoothing length can
results in a dissatisfaction of (58), leading to poor accuracy
in the original SPH method. This is a reason why we often
need to examine the influence of the smoothing length on
the SPH approximation results.

In summary, the original SPH models, in general, do not
have even C0 consistency. Such an inconsistency originates
from the discrepancy between the SPH kernel and parti-
cle approximations. Boundary particles, irregular distributed
particles, and variable smoothing length can usually produce
inconsistency in the particle approximation process. In the
next section, we discuss ways to restore the consistency in
SPH models.

4.3 Review on Approaches for Restoring Consistency

It has been shown that the original SPH method even does
not have 0th particle consistency. Different approaches have
been proposed to improve the particle inconsistency and
hence the SPH approximation accuracy. Some of them in-
volve reconstruction of a new smoothing function so as
to satisfy the discretized consistency conditions. However,
these approaches are usually not preferred for hydrodynamic
simulations because the reconstructed smoothing function
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can be partially negative, non-symmetric, and not monoton-
ically decreasing. Approaches which improve the particle
consistency without changing the conventional smoothing
function are usually more preferable in simulating hydrody-
namics.

One early approach [49, 52] is based on the anti-
symmetric assumption of the derivative of a smoothing func-
tion

N∑
j=1

Wi,α�vj = 0, (60)

where Wi,α = ∂Wi(x)/∂xα , in which α is the dimension
index repeated from 1 to d (d is the number of dimen-
sions). Therefore when approximating the derivative of a
function f , the particle approximation can be rewritten as

fi,α =
N∑

j=1

(fj − fi)Wi,α�vj , (61)

or

fi,α =
N∑

j=1

(fj + fi)Wi,α�vj . (62)

It should also be noted that (60) is not necessarily valid, even
if its corresponding continuous counterpart

∫
Wi,αdx = 0 is

valid (for interior regions). This is also a manifestation of
the particle inconsistency. Therefore (61) and (62) actually
use the particle inconsistency in approximating the deriva-
tive of the smoothing function to offset or balance the parti-
cle inconsistency in approximating the derivatives of a field
function, with a hope to improve the accuracy of the approx-
imations.

Randles and Libersky [52] derived a normalization for-
mulation for the density approximation

ρi =
∑N

j=1 ρjWij�vj∑N
j=1 Wij�vj

, (63)

and a normalization for the divergence of the stress tensor σ

(∇ · σ)i =
∑N

j=1(σj − σi) ⊗ ∇iWij�vj∑N
j=1(xj − xi ) ⊗ ∇iWij�vj

, (64)

where ⊗ is the tensor product. Again, (63) and (64) also use
the inconsistency in approximating the smoothing function
and its derivatives to offset the inconsistency in approximat-
ing a field function and its derivatives, also with an aim to
improve the accuracy of the approximations.

Based on Taylor series expansion on the SPH approxi-
mation of a function, Chen et al. [54] suggested a correc-
tive smoothed particle method (CSPM). In one-dimensional
space, the process of CSPM can be briefed as follows.

Performing Taylor series expansion at a nearby point xi ,
a sufficiently smooth function f (x) can be expressed as

f (x) = fi + (x − xi)fi,x + (x − xi)
2

2! fi,xx + · · · . (65)

Multiplying both sides of (65) by the smoothing function W

and integrating over the entire computational domain yield
∫

f (x)Wi(x)dx

= fi

∫
Wi(x)dx + fi,x

∫
(x − xi)Wi(x)dx

+ fi,xx

2

∫
(x − xi)

2Wi(x)dx + · · · . (66)

If the terms involving derivatives in this equation are ne-
glected, a corrective kernel approximation for function f (x)

at particle i is obtained as

fi =
∫

f (x)Wi(x)dx∫
Wi(x)dx

. (67)

For a conventional smoothing function (non-negative and
symmetric), the second term at the RHS of (66) is zero for
interior region and not zero for boundary region. Therefore
the corrective kernel approximation expressed in (67) is also
of 2nd order accuracy for interior region and 1st order ac-
curacy for boundary region. Comparing (67) with (16), it is
found that for the interior regions, the kernel approximations
in the original SPH and CSPM are actually the same due
to the satisfaction of the normalization condition (in con-
tinuous form). For the boundary regions, since the integral
of the smoothing function is truncated by the boundary, the
normalization condition cannot be satisfied. By retaining the
non-unity denominator, CSPM restores the C0 kernel con-
sistency.

The corresponding particle approximation for function
f (x) at particle i can be obtained using summation over
nearest particles for each term in (66) and again neglecting
the terms related to derivatives

fi =
∑N

j=1 fjWij�vj∑N
j=1 Wij�vj

. (68)

It is noted that the particle approximation of the second term
at the RHS of (66) is not necessarily zero even for the inte-
rior particles due to the irregularity of the particles. There-
fore strictly speaking, the particle approximation expressed
in (68) is of 1st order accuracy for both the interior and
boundary particles. Only if the particles are uniformly dis-
tributed can the particle approximation of the second term
at the RHS of (66) be zero. In this case, the particle approx-
imation expressed in (68) is of 2nd order accuracy for the
uniformly distributed interior particles.
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If replacing Wi(x) in (66) with Wi,x and neglecting the
second and higher derivatives, a corrective kernel approxi-
mation for the first derivative is generated as

fi,x =
∫ [f (x) − f (xi)]Wi,x(x)dx∫

(x − xi)Wi,x(x)dx
. (69)

The particle approximations corresponding to (69) is

fi,x =
∑N

j=1(fj − fi)Wi,x�vj∑N
j=1(xj − xi )Wi,x�vj

. (70)

Similarly, The CSPM kernel approximations for the
derivatives are also of second order accuracy (or 1st or-
der consistency) for interior regions, but 1st order accu-
racy (or 0th order consistency) for boundary regions. Ex-
cept for cases with uniformly distributed interior particles,
the CSPM particle approximations for the derivatives are of
1st order accuracy (or 0th order consistency) for both the
interior and boundary particles.

4.4 An SPH Formulation for Discontinuity

It is clear that CSPM can have better accuracy than the
conventional SPH method as it improves the boundary de-
ficiency problem. It was reported that the CSPM can also
reduce the so-called tensile instability inherent in the tradi-
tional SPH method [89, 90].

One notable point in CSPM is that it is based on Tay-
lor series analysis on the kernel approximation of a field
function and its derivatives. To perform Taylor series analy-
sis, the function under consideration should be sufficiently
smooth. Therefore, CSPM is not applicable to problems
with discontinuities such as hydrodynamic problems that
generate shock waves.

Liu and his co-workers proposed a further improvement
on SPH in resolving discontinuity problems, and they call
this as a discontinuous SPH, or DSPH [55]. The idea of
DSPH one-dimensional space is briefed here as follows.

Examine the kernel approximation for any function f (x)

in the support domain of xi . The support domain is bounded
by a and b with a dimension of 2κh, shown in Fig. 6. As-
suming that function f (x) has an integrable discontinuity
at d in the support domain and that it is located in the right

Fig. 6 Kernel approximations for a one-dimensional function with a
discontinuity at point d . The support domain of xi is bounded by a and
b with a dimension of 2κh

half of the support domain, i.e., xi < d ≤ b, the integration
of the multiplication of f (x) and the smoothing function W

over the entire support domain can be divided into two parts

∫ b

a

f (x)Wi(x)dx =
∫ d

a

f (x)Wi(x)dx

+
∫ b

d

f (x)Wi(x)dx. (71)

Expanding f (x) in the first integral on the right hand side
around point xi , and around another arbitrary point xk in the
second integral, where d ≤ xk ≤ b gives

∫ b

a

f (x)Wi(x)dx

= f (xi )

∫ d

a

Wi(x)dx + f (xk)

∫ b

d

Wi(x)dx

+ f ′(xi )

∫ d

a

(x − xi )Wi(x)dx

+ f ′(xk)

∫ b

d

(x − xk)Wi(x)dx + r(h2). (72)

Rearranging by combining some similar terms with some
transformations yields

∫ b

a

f (x)Wi(x)dx

= f (xi )

∫ b

a

Wi(x)dx + [f (xk) − f (xi )]
∫ b

d

Wi(x)dx

+ f ′(xi )

∫ b

a

(x − xi )Wi(x)dx

+
∫ b

d

[(x − xk)f
′(xk) − (x − xi )f

′(xi )]Wi(x)dx

+ r(h2). (73)

Since the kernel W is assumed to be even, normalized, and
has a compact support, we have |x − xk| ≤ κh. In the above
equation, we assume that f ′(x) must exist and be bounded
in [a, d) ∪ (d, b]. In other words, the derivative of f (x) ex-
ists, and when x approaches d from both sides, it is bounded
within a finite limit. Hence, the last two terms (excluding
the residual term) on the RHS of the above equation can be
bounded by terms of order of h respectively. Therefore, the
above equation can be rewritten as:

∫ b

a

f (x)Wi(x)dx

= f (xi )

∫ b

a

Wi(x)dx + [f (xk) − f (xi )]
∫ b

d

Wi(x)dx

+ r(h). (74)
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This equation can be re-written as

f (xi ) =
∫ b

a
f (x)Wi(x)dx∫ b

a
Wi(x)dx

−
{ [f (xk) − f (xi )]

∫ b

d
Wi(x)dx∫ b

a
Wi(x)dx

}
+ r(h), (75)

which is the kernel approximation of the field function with
a discontinuity.

Similarly, the kernel approximation of the derivative is
obtained as

f ′(xi )

=
∫ b

a
[f (x) − f (xi )]Wix(x)dx∫ b

a
(x − xi )Wix(x)dx

−
{ [f (xk) − f (xi )]

∫ b

d
Wix(x)dx∫ b

a
(x − xi )Wix(x)dx

+
∫ b

d
[(x − xk)f

′(xk) − (x − xi )f
′(xi )]Wix(x)dx∫ b

a
(x − xi )Wix(x)dx

}

+ r(h). (76)

The above two equations are the kernel approximations
of a field function (and its derivative) with a discontinuity
in the support domain. The kernel approximations at the
RHS of (75) and (76) consist of two parts. The first parts
are the same as those at the RHS of (67) and (69), which de-
scribe the kernel approximations of a field function and its
derivatives. It is the second parts in the big brackets that de-
scribe the behavior of the discontinuity. Neglecting the sec-
ond parts of (75) and (76) should result in numerical errors
since the resultant kernel approximations in the presence of
a discontinuity are inconsistent. If the second terms are re-
tained, the resultant kernel approximations are consistent up
to the first order.

The particle approximations for the field function and its
derivatives at particle i are a little bit different from the parti-
cle approximations in the conventional SPH and CSPM due
to the presence of the discontinuity. When the domain is dis-
cretized by particles, since two particles cannot be located
at the same position, the discontinuity should always be lo-
cated between two particles. In deriving (75) and (76), since
the point xk is arbitrarily selected, it can be taken as the
particle that is nearest to and on the right hand side of the
discontinuity (Fig. 7).

The particle approximation of the discontinuous function
is

fi =
∑N

j=1(
mj

ρj
)fjWij∑N

j=1(
mj

ρj
)Wij

Fig. 7 Particle approximations for a function with a discontinuity at
point d . In the process from the kernel approximation to particle ap-
proximation, an arbitrary point xk is associated with a particle k that
is the nearest particle on the right hand side of the discontinuity. The
total number of particles in the support domain of [a, b] is N

−
{ [f (xk) − f (xi )]∑N

j=k(
mj

ρj
)Wij∑N

j=1(
mj

ρj
)Wij

}
. (77)

And similarly, the particle approximation of the derivative
of the discontinuous function is

fi =
∑N

j=1(
mj

ρj
)(f (xj ) − f (xi ))∇iWij∑N

j=1(
mj

ρj
)(xj − xi )∇iWij

−
{ [f (xk) − f (xi )]∑N

j=k(
mj

ρj
)∇iWij∑N

j=1(
mj

ρj
)(xj − xi )∇iWij

+
∑N

j=k(
mj

ρj
)[(xj − xk)f

′(xk) − (xj − xi )f
′(xi )]∇iWij∑N

j=1(
mj

ρj
)(xj − xi )∇iWij

}
.

(78)

Also, the particle approximations consist of two parts, the
first primary parts similar to those in the CSPM approx-
imation and the second additional parts in the big brack-
ets developed for the discontinuity treatment. It should be
noted that the summations of the numerators of the addi-
tional parts are only carried out for particles in the right por-
tion of the support domain [d, b] shaded in Fig. 7. The co-
ordinates of these particles are xj (j = k, k + 1, . . . ,N ) that
satisfy (xk − xj )(xk − xi ) ≤ 0. Particles at the same side as
i do not contribute to the summation in the additional parts.
Otherwise, the additional part would become zero, and the
modification term would disappear.

Equations (75) and (76), (77) and (78) are the essen-
tial DSPH formulations for approximating a discontinuous
function and its first derivative. It is possible to extend the
DSPH to higher order derivatives, and multi-dimensional
space.

The different performances of the SPH, CSPM and
DSPH in resolving discontinuity have been demonstrated
by a number of numerical tests. One of them is the sod
tube problem, which has been studied by many researchers
for validation purposes [47, 91]. The shock-tube is a long
straight tube filled with gas, which is separated by a mem-
brane into two parts of different pressures and densities. The
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Fig. 8 Density profiles for the shock tube problem obtained using dif-
ferent versions of SPH formulation. DSPH gives the best result. CSPM
failed to capture the major shock physics (t = 0.2 s)

gas in each part is initially in an equilibrium state of constant
pressure, density and temperature. When the membrane is
taken away suddenly, a shock wave, a rarefaction wave and
a contact discontinuity will be produced. The shock wave
moves into the region with lower density gas; the rarefaction
wave travels into the region with higher density gas; while
the contact discontinuity forms near the center and travels
into the low-density region behind the shock. Exact solution
is available for comparison for this one-dimensional prob-
lem.

In this example, the cubic spline function is used as the
smoothing function to simulate this shock tube problem. The
initial conditions are same as those introduced by Sod [92]

x ≤ 0, ρ = 1, v = 0, e = 2.5,

p = 1, �x = 0.001875,

x > 0, ρ = 0.25, v = 0, e = 1.795,

p = 0.1795, �x = 0.0075

where ρ, p, e, and v are the density, pressure, internal en-
ergy, and velocity of the gas, respectively. �x is the particle
spacing. A total of 400 particles are deployed in the one-
dimensional problem domain. All particles have the same
mass of mi = 0.001875. 320 particles are evenly distributed
in the high-density region [−0.6,0.0], and 80 particles are
evenly distributed in the low-density region [0,0.6]. The ini-
tial particle distribution is to obtain the required discontinu-
ous density profile along the tube. The equation of state for
the ideal gas p = (γ − 1)ρe is employed in the simulation
with γ = 1.4.

In the simulation, the time step is 0.005 s and the sim-
ulation is carried out for 40 steps. In resolving the shock,
the Monaghan type artificial viscosity is used, which also

Fig. 9 Pressure profiles for the shock tube problem obtained using
different versions of SPH formulation

Fig. 10 Velocity profiles for the shock tube problem obtained using
different versions of SPH formulation

serves to prevent unphysical penetration [49]. Figures 8, 9,
10 and 11 show, respectively, the density, pressure, velocity
and internal energy profiles.

It can be seen that the obtained results from the DSPH
agree well with the exact solution in the region [−0.4,0.4].
The shock is observed at around x = 0.3 within several
smoothing lengths. The rarefaction wave is located between
x = −0.3 and x = 0. The contact discontinuity is between
x = 0.1 and x = 0.2. Just as reported by Hernquist and Katz
[91] and Monaghan [47], the traditional SPH with artifi-
cial viscosity yields comparable results in capturing shock
physics. The DSPH gives slightly better results than the tra-
ditional SPH method though only 40 steps passed. If more
dynamic steps are involved, the better performance of the
DSPH is more evident [55].
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Fig. 11 Energy profiles for the shock tube problem obtained using
different versions of SPH formulation

CSPM failed to captures the major shock physics. In this
example, CSPM performs poorer even than the traditional
SPH method. The poor performance of the CSPM in simu-
lating shock waves should arise from the denominator that
in fact acts as a normalization factor. Revisiting (67), it is
found that the summation of the smoothing function around
the discontinuity region is far from the unity. When it is
used to normalize the summation of the density, the local
features of shock wave can be smoothed out, and hence the
shock physics can be concealed. In contrast, the traditional
SPH does not suffer from this smoothing effect, and the
DSPH benefits from the addition part in resolving the shock
physics. Their performance, therefore, should be better than
that of the CSPM. It is clear that the different performances
of CSPM and DSPH originate from the additional corrective
parts in DSPH that approximate the discontinuity.

4.5 A General Approach to Restore Particle Inconsistency

Liu et al. gave a general approach to restore particle incon-
sistency through reconstructing the smoothing function [6].
In general, a smoothing function can be written in the fol-
lowing form

W(x − xj , h) = b0(x, h) + b1(x, h)

(
x − xj

h

)

+ b2(x, h)

(
x − xj

h

)2

+ · · ·

=
k∑

I=0

bI (x, h)

(
x − xj

h

)I

. (79)

By substituting the above smoothing function into (45), and
after some trivial transformation, the discretized form of
(45) can be written as

∑k
I=0 bI (x, h)

∑N
j=1(

x−xj

h
)I�xj = 1

∑k
I=0 bI (x, h)

∑N
j=1(

x−xj

h
)I+1�xj = 0

...∑k
I=0 bI (x, h)

∑N
j=1(

x−xj

h
)I+k�xj = 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (80)

The k + 1 coefficients bI (x, h) can then be determined by
solving the following matrix equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m0(x, h) m1(x, h) · · · mk(x, h)

m1(x, h) m2(x, h) · · · m1+k(x, h)

.

.

.
.
.
.

. . .
.
.
.

mk(x, h) mk+1(x, h) · · · mk+k(x, h)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

︸ ︷︷ ︸
M

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b0(x, h)

b1(x, h)

.

.

.

bk(x, h)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

︸ ︷︷ ︸
b

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
0
.
.
.

0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

︸ ︷︷ ︸
I

,

(81)

or

Mb = I , (82)

where

mk(x, h) =
N∑

j=1

(
x − xj

h

)k

�xj , (83)

M is a moment matrix, b is a vector of coefficients, I is a
vector of given constants.

After determining the coefficients bI (x, h), the smooth-
ing function expressed in (79) can be calculated. The pro-
cedure ensures particle consistency to kth order. Therefore,
the particle consistency restoring process actually gives an
approach to construct some kind of smoothing function for
the SPH methods.

Comparing with the traditional smoothing function,
which is only dependent on the particle distance and applica-
ble for all the particles, the consistency restored smoothing
function is particle-wise. It therefore depends on both the
distance and positions of the interacting particles. The cost-
effectiveness for this approach in constructing particle-wise
smoothing functions needs to be considered since it will
require additional CPU time to solve the particle-wise equa-
tion (79) for all the particles. Moreover, since all particles
are moving, the particle location is changing as well. Hence,
the particle-wise smoothing functions need to be computed
for every time step. Another problem is that, to solve (81),
the moment matrix M is required to be non-singular. There-
fore, the particle distribution must satisfy certain conditions
to avoid singular momentum matrix. This implies that when
we enforce on consistency, we will face the stability prob-
lem shown as the bad-conditioned moment matrix in the
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SPH settings. In contrast, in the original SPH method, parti-
cles can be arbitrary distributed, though the obtained results
may be less accurate.

As far as the approximation is concerned, restoring par-
ticle consistency is an improvement on the accuracy of the
particle approximation, provided that the moment matrix M
is not singular. However, it is noted that restoring the con-
sistency in discrete form leads to some problems in simulat-
ing hydrodynamic problems. Firstly, the resultant smooth-
ing function is negative in some parts of the region. Neg-
ative value of smoothing function can leads to unphysical
representation of some field variables, such as negative den-
sity, negative energy that can lead to a breakdown of the
entire computation. Secondly, the resultant smoothing func-
tion may not be monotonically decreasing with the increase
of the particle (node) distance. Moreover, the constructed
smoothing function may not be symmetric and using this
non-symmetric smoothing function violates the equal mu-
tual interaction in physics.

4.6 Finite Particle Method

Considering the disadvantages of the above-mentioned par-
ticle inconsistency restoring approach in constructing a
point-wise smoothing function, Liu et al. devised another
particle consistency restoring approach, which retains the
conventional non-negative smoothing function instead of
reconstructing a new smoothing function [56, 57]. This ap-
proach has been termed as Finite Particle Method (FPM), in
which a set of basis functions can be used in the numerical
approximation.

Performing Taylor series expansion at a nearby point
xi = {xi, yi, zi} and retaining the second order derivatives,
a sufficiently smooth function f (x) at point x = {x, y, z}
can be expressed as follows

f (x) = fi + (xα − xα
i )fi,α + (xα − xα

i )(xβ − x
β
i )

2! fi,αβ

+ r((x − xi )
3), (84)

where α, β are the dimension indices repeated from 1 to 3
(or from x to z). r((x − xi )

3) is the remainder of the expan-
sion. fi , fi,α and fi,αβ are defined as

fi = f (xi ), (85)

fi,α = fα(xi ) = (∂f/∂xα)i, (86)

fi,αβ = fαβ(xi ) = (∂2f/∂xα∂xβ)i . (87)

Multiplying both sides of (84) with a function ϕ1(x −
xi ) and integrating over the problem space � can yield the

following equation

∫
�

f (x)ϕ1(x − xi )dx

= fi

∫
�

ϕ1(x − xi )dx + fi,α

∫
�

(xα − xα
i )ϕ1(x − xi )dx

+ fi,αβ

2

∫
�

(xα − xα
i )(xβ − x

β
i )ϕ1(x − xi )dx

+ r((x − xi )
3). (88)

It is seen that the integration is carried out over the entire
problem space, and can be quite time-consuming. One usual
assumption is that a field variable at point xi is only strongly
influenced by the field variables at nearby points and that the
influence of the field variables at points far away from point
xi is very weak and hence can be neglected. Therefore, the
global integration can be converted into a local integration
by defining a support domain for point xi in which the field
variables at point xi can be determined. The shape of the
support domain can be conveniently taken as a circle (in 2D)
or a sphere (in 3D) with a radius of κh, in which κ is a
constant scalar factor, and h is a length characterizing the
support domain. The function ϕ1(x − xi ) is also limited to
the local support domain, and can be rewritten as ϕ1(x −
xi , h).

Since the points distributed in the problem space are ac-
tually particles, each occupying individual lumped volume,
(88) can be numerically approximated by summation over
the particles surrounding point xi as follows

N∑
j=1

f (xj )ϕ1(xj − xi , h)�Vj

= fi

N∑
j=1

ϕ1(xj − xi , h)�Vj

+ fi,α

N∑
j=1

(xα
j − xα

i )ϕ1(xj − xi , h)�Vj

+ fi,αβ

2

N∑
j=1

(xα
j − xα

i )(x
β
j − x

β
i )ϕ1(xj − xi , h)�Vj ,

(89)

where N is the number of particles within the support do-
main of particle i. The remainder term r((x − xi )

3) in (88)
is omitted in (89) for the sake of conciseness. The summa-
tion over the particles is illustrated in Fig. 3.

Equation (89) can be further simplified as the following
equation at point xi

B1i = A1kiFki, (90)
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where

Fki = [fi fi,α fi,αβ ]T , (91)

B1i =
N∑

j=1

f (xj )ϕ1(xj − xi , h)�Vj , (92)

A1ki =
[

N∑
j=1

ϕ1(xj − xi , h)�Vj

×
N∑

j=1

(xα
j − xα

i )ϕ1(xj − xi , h)�Vj

× 1

2

N∑
j=1

(xα
j − xα

i )(x
β
j − x

β
i )ϕ1(xj − xi , h)�Vj

]
.

(93)

Corresponding to 1, 2, and 3 dimensional cases, there are
one function value, 1, 2 and 3 first derivatives, and 1, 3 and 6
second derivatives that will be approximated. It is clear that
k in (91), (93) and (90) is 3, 6, and 10 respectively corre-
sponding to 1, 2, and 3 dimensional cases. To calculate the
function value, the first and the second derivatives at xi , 2, 5,
and 9 other equations similar to (90) are required. Therefore
in 1, 2, and 3 dimensional cases, totally 3, 6, and 10 func-
tions (ϕM(x − xi , h), M = 3, 6, or 10) are required in order
to approximate the function value, the first and second deriv-
ative. These functions form a set of basis functions used for
approximating the function value, its first and second deriv-
atives. A conventional SPH smoothing function and its first
and second derivatives can form a set of basis function in the
FPM. For example, in 2D space, a smoothing function W ,
its two first order derivatives, Wα and Wβ , and its three sec-
ond order derivatives, Wαα , Wαβ and Wββ forms a set of 6
basis functions.

In summary, multiplying a set of basis functions on both
sides of (84), integrating over the problem domain, summing
over the nearest particles within the local support domain of
particle i, a set of matrix equation can be produced to ap-
proximate the function value as well as the first and second
derivatives at particle i. The matrix equations at particle i at
can be written as

BMi = AMkiFki or B = AF (94)

where

BMi =
N∑

j=1

f (xj )ϕM(xj − xi , h)�Vj , (95)

AMki =
[

N∑
j=1

ϕM(xj − xi , h)�Vj

×
N∑

j=1

(xα
j − xα

i )ϕM(xj − xi , h)�Vj

× 1

2

N∑
j=1

(xα
j − xα

i )(x
β
j − x

β
i )ϕM(xj − xi , h)�Vj

]
.

(96)

Equation (94) is the basis of the finite particle method and
can be used to approximate a function value and its deriva-
tives for a field variable. It is seen that only if the coefficient
matrix A is not singular, can these M equations determine
a unique set of solutions at particle i for the M unknowns
in vector F . Solving the above pointwise matrix equations,
the function value as well as the first and second derivatives
at every particle can be simultaneously approximated. Note
that the conditioning of A matrix reflects the stability of the
FPM model.

Since the governing equations in CFD only involve the
first and second derivatives, only the derivatives up to the
second order are retained in (84). For problems in other
areas such as computational solid mechanics, high order
derivatives may be involved. If third or higher order deriv-
atives are to be approximated, in expanding f (x) at xi , the
interested derivatives need to be retained in (84). To ob-
tain the increased number of unknowns, more functions like
ϕM(x − xi , h) are necessary to complete the matrix equa-
tion (94). Therefore, except for the increased number of un-
knowns, increased number of basis functions, and therefore
more computational efforts, the solution procedure for the
interested unknowns is the same.

Comparing conventional SPH and FPM, it is clear that
both FPM and SPH are meshfree particle methods in which
particles with lumped volumes are used to represent the state
of a system. The particles form a frame for interpolation,
differencing or integration in a certain approximation. Both
FPM and SPH can be used as Lagrangian methods if allow-
ing the particles to move in the problem space. However, the
difference between FPM and SPH is obvious.

1. FPM uses a set of basis function to approximate the func-
tion value and its derivatives, whereas SPH employs a
smoothing function and its derivatives to approximate
a function value and the corresponding derivatives. The
smoothing functions in SPH should have some special
properties as described in Sect. 3. However, the basis
functions in FPM are more general. Any set of functions
which do not lead to a singular coefficient matrix A can
be used as basis functions. Therefore the smoothing func-
tion and its specific derivatives actually can be one pos-
sible choice as a suitable set of basis functions.

2. SPH can be regarded as a special case of FPM, whereas
FPM is a generalized version of SPH with modifications.
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In (84), if all the terms related to derivatives are ne-
glected, multiplying both sides of (84) with the smooth-
ing function W , and integrating over the problem space
can lead to the approximation in SPH. Summation over
the nearest particles within the support domain of a par-
ticle further produces the particle approximation of the
field variable at that particle (see (89)).

3. FPM should have better accuracy than SPH. Since no
derivative term is retained in (84), the SPH method ac-
tually is of first order accuracy. If a symmetric smooth-
ing function is used, the terms related to the first order
derivatives are actually zero for the interior particles in
the problem domain. Therefore SPH is of second order
accuracy in interior parts. In contrast, since up to second
order derivatives are retained in the expansion process,
the accuracy of FPM is of third order. Moreover, if higher
derivatives are retained, better accuracy can be achieved.
FPM should have a better accuracy than SPH both for the
interior particles and boundary particles.

4. The accuracy of FPM is not sensitive by the selection of
smoothing length, and extremely irregular particle distri-
bution. This has been demonstrated by Liu and his co-
workers in testing one- and two-dimensional cases.

5. As the solution is to be obtained from solving the matrix
(94), a good matrix inversion algorithm is necessary to
prevent the co-efficient matrix to be negative.

6. The matrix (94) is to be solved at every particle, and
every time step. It can be more computationally expen-
sive than the conventional SPH method.

One simpler example of FPM is to only consider the first
derivative in (84). Using the smoothing function and its first
derivatives as the basis functions, the following equations
can be obtained∫

f (x)Wi(x)dx

= fi

∫
Wi(x)dx + fi,α

∫
(xα − xα

i )Wi(x)dx, (97)

and∫
f (x)Wi,βdx

= fi

∫
Wi,βdx + fi,α

∫
(xα − xα

i )Wi,β(x)dx. (98)

Again β is the dimension index repeated from 1 to d . The
corresponding discrete forms for (97) and (98) are

N∑
j=1

fjWij�vj

= fi ·
N∑

j=1

Wij�vj + fi,α ·
N∑

j=1

(xα
j − xα

i )Wij�vj , (99)

Table 1 Kernel consistency of SPH, CSPM, and FPM

Interior domain Boundary area

SPH 1st order less than 0th order

CSPM 1st order 0th order

FPM 1st order 1st order

and

N∑
j=1

fjWij,β�vj

= fi ·
N∑

j=1

Wij,β�vj + fi,α ·
N∑

j=1

(xα
j − xα

i )Wij,β�vj .

(100)

There are d + 1 equations for d + 1 unknowns (fi and fi,α).
Equations (99) and (100) are therefore complete for solving
with respect to fi and fi,α , and the solutions for fi and fi,α

are
[

fi

fi,α

]

=
⎡
⎣

∑N
j=1 Wij�vj

∑N
j=1(x

α
j − xα

i )Wij�vj∑N
j=1 Wij,β�vj

∑N
j=1(x

α
j − xα

i )Wij,β�vj

⎤
⎦

−1

×
⎡
⎣

∑N
j=1 fjWij�vj∑N

j=1 fjWij,β�vj

⎤
⎦ . (101)

In (99) and (100), the terms related to the function and the
first order derivatives are all retained, only the terms related
to second or high order derivatives are neglected. Therefore
the resultant particle approximations for a function and its
derivatives (see (101)) are able to exactly reproduce a con-
stant and a linear function (C0 and C1 consistency). Hence
the algorithm shown in (101) actually restores the particle
consistency that conventional SPH method does not have.
Again, this particle consistency restoring approach is inde-
pendent of the particle distribution (either regular or irreg-
ular), and the choices of the smoothing kernel and smooth-
ing length. Another advantage is that this particle consis-
tency restoring approach does not change the conventional
smoothing function and should be preferable in simulating
hydrodynamics.

In summary, the consistency of the conventional SPH
method, CSPM, and FPM (if using (101), rather than (94),
which is associated with higher order particle consistency
than (101)) are described in Tables 1 and 2.

Figure 12 shows the approximation results for a linear
function f (x, y) = x + y using discrete models of SPH
and FPM. The particles are uniformly distributed. It is seen
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Table 2 Particle consistency of
SPH, CSPM, and FPM Interior domain Boundary area

Regular distribution Irregular distribution

SPH 1st order less than 0th order less than 0th order

CSPM 1st order 0th order 0th order

FPM 1st order 1st order 1st order

Fig. 12 Approximation results for a linear function f (x, y) = x + y using (a) SPH and (b) FPM in a domain of [0,1,0,1]

that the SPH results are associated with oscillation espe-
cially near the boundary, whereas the particle consistency
restoring approach can obtain much better results, which are
in very good agreement with the analytical solution. It is
worth noting that if the particles are randomly or irregularly
distributed, FPM can also obtain accurate results, whereas,
SPH results can be far away from the analytical solutions.
It is also worth noting that in this simple numerical test, the
approximation is carried out by obtaining numerical values
at current step from the existing numerical values at the par-
ticles at the previous step. There is no physical dynamics
involved in these two numerical performance studies. Only
the accuracy of the numerical approximations of the given
function is studied using different approximation methods. It
can be expected that numerical errors existing in the present
approximated results can propagate to the next approxima-
tion steps and can even be magnified. However, when these
methods are used to simulate a well-posed physical prob-
lem, the physics is governed by the conservation equations.
If the discrete model is stable, the error in the current step is
controlled by the consistency. Therefore, the errors should
be more or less within some level, and will not be magnified
from one step to the next step.

4.7 Consistency vs. Stability

We have seen in the two previous sections that a typical
dilemma exists for many numerical methods: consistency or

stability. For a given “setting” of a numerical model such
as a particle method, we may choose one over another, but
probably a “balanced” one can be difficult to choose. The
original SPH has clearly chosen the stability (and also flex-
ibility) over the consistency, which gives the SPH a dis-
tinct feature of working well for many complicated prob-
lems with good efficiency, but less accuracy. It always tries
to deliver some reasonably good results for the price paid.
This seems to be a very practical choice for many practical
engineering problems, as should be regarded as an advan-
tage of the SPH method. Attempts to improve the accuracy
of SPH via restoring the consistency can be helpful, pro-
vided that the stability and efficiency is not too much com-
promised.

The consistency restoring approaches, such as the FPM,
put more emphases on the consistency (hence hopefully ac-
curacy), but the stability (the conditioning of the M or A ma-
trix) can be in question for some types of problems. Hence
proper measures are needed to establish the stability ensur-
ing the accuracy of the solution.

The question is that can we have both the consistency
and the stability at the same time? The answer is yes, pro-
vided we are willing to change the “setting” and pay the
price. The recently proposed GSM method [32–35] is a typ-
ical example that guarantees both excellent stability for arbi-
trary grids and 2nd order accuracy. It uses also the gradient
smoothed technique, but in a very carefully designed fash-
ion. However, the GSM is not a particle method any more;
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the simplicity and efficiency features of the particle meth-
ods are lost. The GSM requires precise evaluation of the
integrals for carefully chosen types of smoothing domains,
and it works more like FVM. Therefore, the final question
depends on what we want and at what cost: choosing a nu-
merical method should be closely related to the nature of the
problem, the requirement for the solutions and the resources
we have.

5 Special Topics

5.1 Solid Boundary Treatment

Particle methods such as MD, DPD, and SPH are very differ-
ent from the grid based numerical methods in treating solid
boundary, and care must taken in this regards. For finite el-
ement methods, proper boundary conditions can be well de-
fined and properly imposed without affecting the stability of
the discrete model. In the finite difference method, because
the domain is relatively regular, proper ways to handling the
boundary conditions have already been developed. In either
FEM or FDM, the implementations of boundary conditions
(either Neumann boundary conditions or Dirichlet bound-
ary conditions, or mixed boundary conditions) are generally
straightforward [2, 3, 5, 93]. In contrast, in the MD, DPD
and SPH, the implementation of the boundary conditions is
not as straightforward as in the grid based numerical mod-
els. This has been regarded historically as one weak point of
the particle methods [12, 15, 77, 79, 94–99]. For molecular
dynamics and dissipative particle dynamics, it is common to
fill the solid obstacle areas with frozen particles. These fixed
particles can prevent the mobile particles from penetrating
the solid walls, and interact with the mobile particles with
proper interaction models. Different complex solid matrix
and solid-fluid interface physics can thus be modeled by ap-
propriately deploying fixed particles plus a suitable interac-
tion model with mobile particles. Preventing fluid particles
from penetrating solid walls by exerting a repulsive force
simulates the boundary condition with zero normal veloc-
ity. Different models of reflection or mirror of fluid particles
or interaction models of solid particles with fluid particles
can also be applied to exert slip or non-slip boundary condi-
tion [11, 40, 97, 100–103]. In principal, the boundary treat-
ment techniques in MD and DPD can also be used for SPH.
However, SPH is a continuum scale particle method, and
the field variables on boundaries such as pressure need to be
directly calculated. Therefore solid boundary treatment in
SPH is more difficult and numerical techniques for imple-
menting solid wall boundary conditions are also more diver-
sified. Since the invention of the SPH method, a lot of works
have been published addressing the treatments of solid wall
boundary conditions [94, 97, 104–111].

Fig. 13 SPH kernel and particle approximations for interior and
boundary particles. The boundary particles suffer from particle insuf-
ficiency, and no contribution comes from outside since there are no
particles beyond the boundary

As discussed in Sect. 4, the conventional SPH model suf-
fers from particle inconsistency that is closely related to the
selection of smoothing function, smoothing length, and most
importantly the distribution of particles. An extreme case is
the particle distribution near the boundary area. Only par-
ticles inside the boundary contribute to the summation of
the particle interaction, and no contribution comes from the
outside since there are no particles beyond the boundary.
This one-sided contribution does not give correct solutions,
because on the solid surface, although the velocity is zero,
other field variables such as the density are not necessarily
zero.

Some improvements have been proposed to treat the
boundary condition. Monaghan used a line of ghost or vir-
tual particles located right on the solid boundary to produce
a highly repulsive force to the particles near the bound-
ary, and thus to prevent these particles from unphysically
penetrating through the boundary [112]. Campbell treated
the boundary conditions by including the residue boundary
terms in the integration by parts when estimating the orig-
inal kernel integral involving gradients [113], as discussed
in Sect. 3 in deriving the constructing conditions for the
smoothing kernel function. Libersky and his co-workers in-
troduced ghost or image (or imaginary) particles to reflect
a symmetrical surface boundary condition with opposite ve-
locity on the reflecting image particles [114]. Later, Ran-
dles and Libersky proposed a more general treatment of the
boundary condition by assigning the same boundary value
of a field variable to all the ghost particles, and then interpo-
lating smoothly the specified boundary ghost particle value
and the calculated values of the interior particles [52].

In general, it is feasible to use virtual particles to im-
plement the solid boundary conditions. These virtual par-
ticles can be allocated on and outside the boundary. These
virtual particles can be classified into two categories, vir-
tual particles that are located right on the solid boundary
(Type I) and virtual particles that are outside the boundary
(Type II) (see Fig. 14). Type I virtual particles are similar to
what Monaghan used [112], and they are used to exert a re-
pulsive boundary force on approaching fluid (real) particles
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Fig. 14 Schematic illustration of flow region, solid boundary, real
fluid particles and virtual particles

to prevent the interior particles from penetrating the bound-
ary. The penalty force is calculated using a similar approach
for calculating the molecular force of Lennard-Jones form
[115]. If a Type I virtual particle is the neighboring particle
of a real particle that is approaching the boundary, a force is
applied pairwisely along the centerline of these two particles
as follows

PBij =
{

D[( r0
rij

)n1 − (
r0
rij

)n2 ]xij

r2
ij

, (
r0
rij

) ≤ 1,

0, (
r0
rij

) > 1.
(102)

where the parameters n1 and n2 are empirical parameters,
and are usually taken as 12 and 4 respectively. D is a prob-
lem dependent parameter, and should be chosen to be in the
same scale as the square of the largest velocity. The cutoff
distance r0 is important in the simulation. If it is too large,
some particles may feel the repulsive force from the vir-
tual particles in the initial distribution, thus leads to initial
disturbance and even blowup of particle positions. If it is
too small, the real particles may have already penetrated the
boundary before feeling the influence of the repulsive force.
In most practices, r0 is usually selected approximately close
to the initial particle spacing. To more effectively prevent
fluid particles from penetrating the solid wall, Type I virtual
particles are usually more densely distributed at the solid
boundary than the fluid particles (Fig. 14).

Type II virtual particles are usually obtained through re-
flecting the real fluid particles along the solid boundary.
Scalar properties of the virtual particles can be taken as the
same as the reflected real particles, while velocity of the vir-
tual particles are usually taken as opposite of the reflected
counterparts. As such the non-slip boundary condition is im-
plemented. Due to the compactness of the smoothing ker-
nel function, only the real particles that are within κh to
the solid boundary are necessary to be reflected to form
Type II virtual particles. Hence there are only several lay-
ers of Type II virtual particles outside the solid boundary.
For example, if the cubic spline smoothing function is used,
there are two layers of Type II virtual particles (if the real
particles are regularly distributed). Therefore, for a fluid par-
ticle i close to the solid boundary, all the neighboring parti-

cles NN(i) that are within its influencing area of κhi can be
categorized into three subsets (see Fig. 14)

(a) I (i): all the interior particles that are the neighbors of i

(real particles);
(b) B(i): all the boundary particles that are the neighbors

of i (virtual particles of type I);
(c) E(i): all the exterior particles that are the neighbors of i

(virtual particles of type II).

These two types of virtual particles are specially marked
for contribution in the later summation on the real particles.
Type I virtual particles exert repulsive force on an approach-
ing particle, but they usually do not contribute in the parti-
cle approximation. Type II virtual particles take part in the
kernel and the particle approximations of the real particles.
It is clear that by using type II virtual particles, the one-
sided particle distribution problem in the conventional SPH
method can be somewhat remedied. In different implemen-
tations, the position and physical variables for type II virtual
particles can be fixed (determined once a set of virtual par-
ticles are obtained), or can adapt in the simulation process
with the evolution of the corresponding counterpart real par-
ticles. In general, adapting type II virtual particles can re-
sult in better results. However, the adapting process may be
time-consuming, and may be complicated especially when
the solid wall is not able to be defined in a simple curve.

In many circumstances, the computational domain can
be complicated, and can contain solid obstacles of arbitrary
shapes. Generating type II virtual particles may not be an
easy task. For such cases, a feasible way is to deploy parti-
cles into the computational domain either by placing all the
particles in some kind of lattice, or injecting particles into
the computational domain and then running SPH simulation
for the entire system to reach equilibrium, just as in MD and
DPD simulation. The particles outside of the boundary (or
within the solid obstacles) can be used as type II virtual par-
ticles. This approach has some advantages since the system
starts from a quiet or equilibrium state of the same number
density without unwanted noise. For implementing the non-
slip boundary condition, these virtual particles can move
with the velocity as the obstacles to which they are attached.
For better accuracy, the velocity of the virtual particles can
be obtained from extrapolating the velocity of a neighboring
fluid particle, as illustrated in Fig. 15. Assuming the normal
distance of a virtual particle to the solid boundary is dv , and
the normal distance of a fluid particle to the solid bound-
ary is df , with non-slip boundary condition (velocity on the
boundary is zero), the velocity of the virtual particle under
consideration should be vv = −(dv/df )vf . Hence the ve-
locity difference between the fluid and virtual particles is
vf v = (1 + dv

df
)vf , which can be used in calculating vis-

cous forces as addressed in Sect. 5. Note that the positions
of the virtual particles do not need to evolve. Also if the



50 M.B. Liu, G.R. Liu

Fig. 15 A general approach to construct type II virtual particles and
assign velocities. Only one virtual particle is plotted in the obstacle
region for illustration

obstacle is a moving object, the velocity of the fluid parti-
cle should be taken as the relative velocity to the obstacle.
To prevent numerical singularities caused by a fluid particle
closely approaching the solid boundary (df → 0), a safety
parameter � can be used in calculating the velocity differ-
ence between the fluid and virtual particles as vf v = �vf ,
where � = min(�max,1 + dv

df
). �max is an empirical para-

meter, it is reported that taking 1.5 can result in good results
[111].

5.2 Representation of Solid Grains

To model the geometries of a complicated solid matrix,
the entire computational domain can be discretized using
a ‘shadow’ grid. The grid cells are labeled “0” for regions
occupied by pore spaces and “1” for solid-filled regions
(Fig. 16a). This simple identification of fluid and solid cells
can be used to represent any arbitrary complex geometry.
The unit vectors normal to the solid-fluid interfaces define
the local orientation of the fluid-solid interface and can be
obtained by simply calculating the surface gradient from the

indicator numbers (“0” for liquid regions and “1” for solid
regions). As discussed in Sect. 6.1 in constructing type II vir-
tual particles, we can place particles in the entire computa-
tional domain regularly in some kind of lattice according to a
designated number density. It is also applicable to inject par-
ticles into the computational domain, and run SPH simula-
tion until the system arrives at an equilibrium. At the begin-
ning of each simulation, the particles are initialized and po-
sitioned randomly within the entire computational domain
until a pre-defined particle number density is reached, and
the system is then run to equilibrium. The particles within
the solid cells (marked as “1”) are then ‘frozen’ (their posi-
tions are fixed) to represent the solid grains (Fig. 16b). The
solid grains in obstacles can occupy a considerable fraction
of the entire computational domain, and hence the number
of frozen particles representing the solids can be very large.
Most of the frozen particles inside the solid grains are more
than 1 cut-off distance away from the adjacent fluid cells.
These particles do not contribute to the solid-fluid interac-
tions and consequently they have no influence on the move-
ment of the flow particles within the fluid cells. Therefore,
only the frozen particles that are within 1 cut-off distance
from the solid-fluid interface are retained as boundary parti-
cles (Fig. 16c), and the rest of the particles further inside the
solid grains are removed from the model domain.

Figures 17 and 18 show two example of solid obstacle
representation. In Fig. 17, the flow region is a porous me-
dia system, in which the circular obstacles occupy a great
amount of the computational domain. Figure 17a shows the
original porous media system where the circular obstacles
are filled with (solid) particles. Figure 17b shows the porous
media system for later simulation where only the (solid) par-
ticles within 1 cut-off distance away from the adjacent fluid
cells are retained. In Fig. 18, the flow region is a fractured
network system and the obstacles also occupy most of the
computational domain (Fig. 18a). After treatment, only the
fracture particles within 1 cut-off distance away from the ad-
jacent fluid cells are retained. For both cases, it is convenient
and flexible to treat the complex geometries by identifying
the flow and obstacle regions separately with the indicator

Fig. 16 Schematic illustration
of the treatment of solid
obstacles. (a) The cells in the
entire computational domain are
first labeled, “0” for fluid (void)
cells and “1” for solid (obstacle)
cells. (b) The SPH particles in
the obstacle cells are frozen.
(c) Only the frozen particles that
are close to the fluid cells
(within 1 cut-off distance) are
retained as boundary particles
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Fig. 17 An example of solid obstacle representation in a porous media
flow region with circular obstacles. (a) Original porous media system.
(b) Solid particle distribution for later simulation

Fig. 18 An example of solid obstacle representation in a fracture net-
work in which most of computational domain is full of obstacles.
(a) Original fractured network system. (b) Solid particle distribution
for later simulation

numbers. Also since only the solid particles that are within
1 cut-off distance away from the adjacent fluid cells are re-
tained for later simulation, the number of particles can be
greatly reduced, and therefore the computational efficiency
can be significantly improved.

The above approach of deploying frozen particles to rep-
resent solid grains and interact with flow particles is ap-
plicable to particle methods such as MD, DPD, and SPH,
and it is especially effective for complex boundaries [99,
116–118]. For problems with comparatively simpler geome-
tries, some other approaches are commonly used. These ap-
proaches may also involve particles fixed on the solid bound-
aries with or without equilibrium process, and may involve
non-fixed boundary particles updated with the neighboring
flow particles. Although fixed boundary particles are more
frequently used in SPH literature, non-fixed boundary par-
ticles updated with the neighboring flow particles may pro-
duce better results [6, 110, 111, 119].

5.3 Material Interface Treatment

For modeling systems with multiple materials, an effective
algorithm is required for efficiently describing the material
interface dynamics. It is somewhat different from the grid
based numerical methods in correctly detecting contact and
effectively treating it in particle methods like SPH. Tradi-
tionally SPH uses particles to represent the state of a sys-
tem under consideration. One point is that the SPH parti-
cles are interpolation points on which mass of each parti-
cle has been lumped. An SPH particle has a finite mass and
density, and hence can have a finite volume. However, in
contrast to FEM, FDM and FVM, in which a cell or an el-
ement has a definite shape, an SPH particle has never as-
sumed as a definite shape. On the other hand, the shape of
a particle can also be associated with the influencing area
(or support domain, that is kh) of the particle. Generally an
SPH particle is assumed to be circular (or spherical) when
using a smoothing kernel function with a scalar smoothing
length (Fig. 19a). In some cases, an SPH particle can be el-
liptical (or ellipsoidal) when a tensor smoothing length is
used [120–124] (Fig. 19b). In few simulations, it even can
be taken as a square or a cube [125] (Fig. 19c). In the SPH
simulation, the mass of a particle is usually assumed to be
constant, and updating the density means change of the vol-
ume. If the particle takes a definite shape such as a circular,
then the size of the particle also changes. Therefore differ-
ent shapes and sizes of the SPH particles increase the dif-
ficulty in implementing the contact algorithm. During the
course of SPH development, different contact algorithms
have emerged [126–142]. For simplicity, only SPH mod-
els with circular or spherical shaped particles are discussed
here. The SPH particles are assumed to be hard-spheres
rather than soft balls, as models with soft balls also increase
the difficulty in implementing the contact algorithm.

In the SPH particle models, if particles from different
materials are not bonded together, particles from one ma-
terial can influence, and also be influenced by the particles
from the other material, according to conventional SPH al-
gorithm. Figure 20 shows an example of the material inter-
face at the initial stage, and at a later stage in the evolution.
Initially the SPH particles are distributed regularly, and there
is no intersection and deformation of particles. With the SPH
evolution, particles from different materials influence each
other, and the conventional SPH algorithm can introduce er-
rors since particles from material A influence the particles
from material B in calculating the strain and strain rate, and
vice versa. This interaction between particles from differ-
ent materials can introduce shear and tensile stress, which
prevent sliding and separation of different materials. Special
algorithms are required if an SPH model is used for simula-
tion of problems with sliding and separation.
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Fig. 19 Possible shapes of an
SPH particle. (a) Circular shape
corresponding to a scalar
smoothing length, (b) elliptical
shape corresponding to a tensor
smoothing length at different
directions, (c) square shape
whereas the smoothing length
can also be a tensor

Fig. 20 Illustration of material interface with SPH particle model.
(a) Initial SPH particle distribution, and (b) SPH particle evolution. In-
teraction between particles from different materials can introduce shear
and tensile stress and can prohibit sliding and separation of different
materials

Major steps to be considered in a contact algorithm in the
SPH simulation include (1) identifying the boundary, (2) de-
tecting the contact and (3) applying repulsive contact forces.
Boundary (or interface) has usually been considered to be a
surface one half of the local smoothing length away from the
boundary SPH particles [52, 127]. A convenient way to de-
tect particle-particle contact is to check the proximity of two
approaching particles from different materials, and compare
with the summation of the smoothing lengths of the parti-
cles. As shown in Fig. 21, the contact and penetration be-
tween two particles can be identified by

pe = khi + khj

rij
≥ 1, (103)

where rij is the distance between particle i and particle j .
After detection of the contact and penetration, a restoring
contact force needs to be applied along the centerline of the
two particles (position vector of particle i and particle j ).

There are different choices for the restoring contact force,
which is usually a function of penetration. One possible
choice is the penalty force in Lennard-Jones form. Liu et al.
had used this penalty force for simulating underwater explo-
sion when dealing with different material interface [143]. In
their work, the Lennard-Jones form penalty force is applied

Fig. 21 An illustration of particle and particle contact

pairwisely on the two approaching particles along the cen-
terline of the two particles

f ij =
{

p̄(pen1 − pen2)
xij

r2
ij

, pe ≥ 1,

0, pe < 1,
(104)

where the parameters p̄, n1, n2 are usually taken as 105,
6 and 4 respectively. In fact, these parameters can be ad-
justed to suit the needs of different problems, and the in-
volved driven force in underwater explosions can vary in a
very big range [144]. The application of the penalty force in
combination with the summation between the interface par-
ticles has been shown to well prevent the unphysical pen-
etration in the simulation of underwater explosion, though
numerical oscillations near the vicinity of the interface can
still exist.

It is reasonable that when the penetration of two con-
tacting particle increases (or particle distance decreases),
the magnitude of the restoring force should also increase.
Monaghan [145] used the following form of repulsive force,
which is controlled by the kernel and the global distribution
of the particles

fij = Wij

W(�p)
, (105)

where �p denotes the average particle spacing in the neigh-
borhood of particle i (proportional to smoothing length h).
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Vignjevic et al. [146] used the following repulsive force
for treating possible contact and penetration between solid
particles

f i = Kf

N∑
j=1

mj

ρiρj

∂Wij

∂x
β
i

, (106)

where Kf is a user defined empirical parameter. In their
work, the force was applied to boundary particles that are
within the influencing area kh of each other. This repul-
sive force introduces the derivatives of the smoothing ker-
nel, which in general reaches the maximum at a certain loca-
tion between the origin and the boundary of the influencing
area, and vanishes at the origin and the boundary point (see
Fig. 4). Considering that decreasing the inter-particle dis-
tance means bigger repulsive force, using the kernel itself
rather than its derivative physically would be more reason-
able. For example, one possible choice can be

f i = Kf

N∑
j=1

mj

ρiρj

Wij

xij

r2
ij

. (107)

5.4 Tensile Instability

When using the SPH method for hydrodynamics with ma-
terial strength, one numerical problem called tensile insta-
bility [45, 62, 63, 74, 145, 147–152] may arise. The tensile
instability is the situation that when particles are under ten-
sile stress state, the motion of the particle becomes unsta-
ble. It could result in particle clumping or even complete
blowup in the computation. Swegle et al. demonstrated the
tensile instability effects in a two-dimensional space as il-
lustrated in Fig. 22 [45]. It is a simple test in which the par-
ticles representing the object initially are distributed regu-
larly and under uniform initial stress. The boundary parti-
cles are fixed (two layers) and the interior particles are free
to move due to some kind of external perturbation. If apply-
ing a very small velocity perturbation on a center particle,
theoretically, it will take a long time for a particle under con-
sideration to move over single particle spacing. However, in
an SPH simulation with a common cubic spline smoothing
kernel function, if the stress is tensile, after a number of time
steps (while the number of steps is not sufficiently to move
the particles even a single particle spacing), the interior par-
ticles can clumped together unphysically, and form a void.
It shows that the particle system exhibits a numerical insta-
bility from tensile stress.

According to Swegle, the tensile instability depends nei-
ther on the artificial viscosity, no on the time integration
scheme. It is closely related to the selection of smoothing
kernel function. In a one-dimensional von Neumann stabil-
ity analysis, Swegle et al. gave a criterion for being stable or
instable in terms of the stress state and the second derivative

Fig. 22 Schematic illustration of the tensile instability in a
two-dimensional space. (a) Initial particle distribution; (b) Particle dis-
tribution in a certain stage under the effect of tensile instability

Fig. 23 Schematic illustration of tensile instability with the cubic
spline function and its first and second derivatives

of the smoothing function, i.e., a sufficient condition for the
unstable growth is

Wαασαα > 0, (108)

where Wαα is the second derivative of the smoothing func-
tion.

In the SPH method, the cubic spline smoothing function
(illustrated in Fig. 4) is mostly commonly used. The ini-
tial smoothing length is usually set to be equal to the par-
ticle spacing. Under such circumstances, the first nearest
neighbor particles are located at r/h = 1; and the next near-
est neighbor particles are at r/h = 2. As can be seen from
Fig. 23, the second derivatives of the cubic spline function
from r/h = 1 to r/h = 2 are always positive. Therefore it is
expected that, according to (108), the SPH method with the
cubic spline function would be stable in a compressed state
but could be unstable in a tensile state in this region.
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Fig. 24 Two possible setups of
velocity and stress particles

Several remedies have been proposed to improve or
avoid such tensile instability. Morris suggested using special
smoothing functions since the tensile instability is closely
related to the second order derivative of the smoothing func-
tion [46]. Though successful in some cases, they do not al-
ways yield satisfactory results generally. Chen and his co-
workers proposed the corrective smoothed particle method
(CSPM), which was reported to improve the tensile instabil-
ity [89]. Recently Monaghan and his colleagues proposed an
artificial force to stabilize the computation [145, 153].

The basic reason of tensile instability is that the SPH
method is essentially a collocation method, in which the par-
ticle approximations are conducted ONLY over the particles
that represent the entire system. This leads to insufficient
“sampling” points for establishing equations, and can result
in numerical instability problem [4]. The situation is very
much similar to the so-called “node integration” in the im-
plementation of the element free Galerkin method (EFG)
[154]. In the EFG method, the instability is restored by
adding stabilization terms in the Galerkin weak form. Based
on this analysis, we need somehow bring in more informa-
tion from other points, in addition to these particles.

One of such a method is to make use of the informa-
tion at additional points in the support domain, rather than
use only these collocation particles. Dyka et al. first intro-
duced additional stress points other than the normal particles
in a one-dimensional algorithm aimed at removing the ten-
sile instability in SPH [62, 63]. The stress points were also
shown to be stable in tension and contributed considerably
to the accuracy in wave propagation problems. Later, this
approach has been further extended to multi-dimensional
space by staggering the SPH particles using stress points
so that there are essentially an equal number in each set of
points [64, 108, 151]. Basically in this approach, two sets of
particles are used. One set of SPH particles carry velocity,
and are referred to as “velocity particles”. The other com-
panion set of particles carry all required field variables ex-
cept for the velocity, and are referred to as “stress particles”.
Figure 24 shows two possible setups of velocity and stress
particles.

Randles and Libersky pointed out that, the tensile insta-
bility for problems involving material strength generally is
latent. The growth rate of damages in solid continuum mod-
els is often much faster than the grow rate of the tensile in-
stability [64].

Except for problems with material strength which can ex-
perience tensile instability, fluid mechanics problems some-
times can also meet tensile instability. Melean et al. had
showed the tensile instability in a formation of viscous drop
[155], and the instability can be removed by using the artifi-
cial stress proposed by Monaghan [145, 153].

6 Applications

The original applications of the SPH method is in astrophys-
ical phenomena, such as the simulations of binary stars and
stellar collisions [49, 156, 157], supernova [158, 159], col-
lapse as well as the formation of galaxies [160, 161], coa-
lescence of black holes with neutron stars [162, 163], single
and multiple detonation of white dwarfs [164], and even the
evolution of the universe [165]. It also has been extended to
a vast range of problems in both fluid and solid mechanics
because of the strong ability to incorporate complex physics
into the SPH formulations [6]. The applications of SPH to
many other engineering applications include

• multi-phase flows [119, 166–174],
• coastal hydrodynamics including water wave impact, dam

break, sloshing and overtopping [112, 175–200],
• environmental and geophysical flows including flood and

river dynamics, landslide, flow in fractures and porous
media, seepage, soil mechanics and mudflow [117, 201–
221],

• heat and/or mass conduction [53, 222–227],
• ice and cohesive grains [228–234],
• microfluidics and/or micro drop dynamics [123, 152, 169,

235–246],
• high explosive detonation and explosion [55, 125, 143,

247–256],
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• underwater explosions and water mitigation [125, 143,
247–249, 255],

• elastic and/or plastic flow [52, 114, 257–259],
• fracture of brittle solids [260],
• metal forming and high pressure die casting [68, 261–

270],
• magneto-hydrodynamics and magnetic field simulation

[271–282],
• problems with fluid-solid interactions [176, 196, 210,

283–288], and
• many other problems like blood flow [289–292], traffic

flow [293].

In this review, we will discuss applications of SPH to the
following areas:

• high strain hydrodynamics with material strength,
• high explosive detonation and explosions, and underwater

explosion,
• microfluidics and micro drop dynamics,
• coast hydrodynamics and offshore engineering, and
• environmental and geophysical flows.

6.1 High Strain Hydrodynamics with Material Strength

High strain hydrodynamics is generally characterized by
the presence of shock waves, intense localized materials
response and impulsive loadings. Numerical simulation of
high strain hydrodynamics with material strength such as
high velocity impact (HVI) and penetrations is one of the
formidable but attractive tasks in computational solid me-
chanics. Most of the wave propagation hydro-codes use tra-
ditional grid based methods such as finite difference meth-
ods and finite element methods to simulate high strain hy-
drodynamics. Some of them are associated with advanced
features which attempt to combine the best advantages
of FDM and FEM. Examples include arbitrary Lagrange-
Eulerian (ALE) coupling and coupling Eulerian-Lagrangian
(CEL). Though many successful achievements have been
made using these methods, some numerical difficulties still
exist. These numerical difficulties generally arise from large
deformations, large inhomogeneities, and moving inter-
faces, free or movable boundaries [256, 294–297].

SPH method has been intensively used for simulating
such phenomena of high strain hydrodynamics with mate-
rial strength, due to its special features of meshfree, La-
grangian and particle nature. Many researchers have inves-
tigated impact (either high velocity or not) and penetration
using SPH method [50, 51, 86, 129, 132, 134, 139, 140,
298–335]. The applications are mainly in defense industry,
and typical numerical examples range from Taylor bar im-
pacting on a solid wall and spherical projectile/bumper col-
lision/penetration [114, 330], projectile impact and penetra-
tion and an aircraft fuselage nose impacting a rigid target

[300], to bird strike impacting on an aircraft Wing [335],
and even to a high-quality high-fidelity visualization of the
September 11 attack on the world trade center [328].

Libersky and his co-workers have carried out the pioneer-
ing work of applying the SPH method to high strain hydro-
dynamic problems including hyper velocity impact (HVI),
fracture and fragmentation [52, 114, 258]. The group from
the Applied Physics Division of Los Alamos National Lab-
oratory (LANL) has modeled high velocity impacts ranging
from the very small size (femtogram-scale projectiles that
have been accelerated by a Van de Graaf machine to cre-
ate craters in various types of targets) to the very large size
(Shoemaker-Levy comet impact with the planet Jupiter).
Johnson et al. [51, 314] proposed a normalized smooth-
ing function (NSF) for axisymmetric problems based on the
condition of uniform strain rate, and have made outstand-
ing contributions in the application of SPH to impact prob-
lems. Attaway, Pampliton and Swegle et al. have worked in
coupling the SPH processor with a transient-dynamics FEM
code, PRONTO, in which high-strain areas that typically
tangle or break conventional finite element meshes are re-
solved using the SPH method [126, 336].

Zhou and Liu have revisited the Taylor-Bar-Impact with
the focus on the variation of results corresponding to the
different model parameters which represent varied SPH
implementation in a series of three-dimensional computa-
tional simulations, and have provided informative data on
appropriate SPH implementation options [259]. They also
have investigated normal and oblique hypervelocity impacts
of a sphere on the thin plate, producing large deforma-
tion of structures. Figure 25 shows the snapshots of three-
dimensional simulation of normal hypervelocity impact of
a sphere on the thin plate at t = 0, 10, 15, and 20 µs. Fig-
ure 26 shows the top view (a) and three dimensional view
(b) of oblique hypervelocity impact of a sphere on the thin
plate at t = 20 µs with a striking angle of 30o. They observed
that for oblique hypervelocity impacts of a sphere on the thin
plate, the shape of the crater is no longer in circle, and the
shape of the debris cloud changes with different striking an-
gles while the ratio of the debris cloud (length over width)
remains approximately 1.3.

The standard SPH method uses an isotropic smooth-
ing kernel which is characterized by a scalar smoothing
length. One of the problems associated with the standard
SPH is that the isotropic kernel of SPH can be seriously
mismatched to the anisotropic volume change that generally
occur in many problems. To closely match the anisotropic
volume changes, an anisotropic smoothing kernel which can
be characterized by a matrix (in two-dimensional space) or
tensor (in three-dimensional space) smoothing length can be
efficacious. This leads to the development of the adaptive
smoothed particle hydrodynamics (adaptive SPH or ASPH)
in which the smoothing length can be adapted with the vol-
ume changes or other dimension-dependent features. The
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Fig. 25 Snapshots of
three-dimensional simulation of
normal hypervelocity impact of
a sphere on the thin plate at
t = 0, 10, 15, and 20 µs (from
[259])

Fig. 26 Top view (a) and three
dimensional view (b) of oblique
hypervelocity impact of a sphere
on the thin plate at t = 20 µs
with a striking angle of 30°
(from [259])

idea of using anisotropic kernel with SPH dates back to
Bicknell and Gingold [337]. Fulbright et al. also presented
three-dimensional SPH designed to model systems domi-
nated by deformation along a preferential axis using spher-
oidal kernels [338]. Later on Shapiro et al. systematically
introduced anisotropic kernels, tensor smoothing and shock-
tracking to SPH to create ASPH [121]. Owen et al. pre-
sented an alternative formulation of the ASPH algorithm

for evolving anisotropic smoothing kernels [120]. Except for
problems with anisotropic deformations, the concept of el-
liptical kernel has also been applied to channel flows with
very large length width ratio for saving computational ef-
forts [123]. The numerical results presented in the references
further demonstrated that ASPH has significantly better per-
formance than the standard SPH in terms of resolving ability
for a wide range of problems.
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Fig. 27 Initial particle distribution in the vicinity of the contact area
for both the SPH and ASPH simulation of a cylinder impacting on a
plate (from [124])

Liu and his co-workers have developed an adaptive
smoothed particle hydrodynamics method (ASPH) for high
strain Lagrangian hydrodynamics with material strength
[124, 339]. In ASPH, the isotropic kernel in the standard
SPH is replaced with an anisotropic kernel whose axes
evolve automatically to follow the mean particle spacing
as it varies in time, space, and direction around each par-
ticle. Except for the features inherited from the standard
SPH, ASPH can capture dimension-dependent features such
as anisotropic deformations with a more generalized ellipti-
cal or ellipsoidal influence domain. A series of comparative
studies show that ASPH has better accuracy than the stan-
dard SPH when being used for high strain hydrodynamic
problems with inherent anisotropic deformations.

A typical example is the simulation of an aluminum (Al)
cylinder on an Al thin plate, as shown in Fig. 27. In the simu-
lation, the cylinder is of 1.0 cm diameter. The plate is 0.4 cm
thick. The plate length is of 10 cm. The particles are all ini-
tialized as squares of 0.02 cm in side dimensions. The par-
ticles in the cylinder, which is an infinite cylinder in plane
symmetry, are arranged in circumferential rings as this gives
a most realistic representation of the geometry. The parti-
cles in the plate are arranged in a rectangular Cartesian ar-
ray. There are 500 particles along the length and 20 particles
along the thickness of the plate. There are 1956 particles in
the cylinder and 10000 particles in the plate, for a total of
11956 particles. The cylinder is initially in contact with the
center of the plate. The problems are run with the plate free
of constraints. The impact speed of the cylinder is 6180 m/s.
The problems are run to 20 µs after the impact. The envi-
ronmental and initial temperature of the cylinder and plate
are set to 0°C. Figure 28 shows the particle distributions ob-
tained by using SPH at 0, 5, 15, and 20 µs respectively. Fig-

Fig. 28 Particle distributions obtained using the SPH method for sim-
ulating an Al cylinder penetrating an Al plate at 0, 5, 15, and 20 µs
respectively (from [124])

Fig. 29 Particle distributions obtained using ASPH for simulating an
Al cylinder penetrating an Al plate at 0, 5, 15, and 20 µs respectively
(from [124])

ure 29 shows the particle distributions obtained using ASPH
at the same stages. In general, both SPH and ASPH can get
agreeable results with the experimental observations [340].
The symmetry of the problem is well preserved. Figure 30
shows the close-up view of the particle distributions near
the penetrated edge of the plate obtained using SPH (a) and
ASPH (b) at 20 µs. In comparison with the SPH simulation,
the orientation and anisotropy of the deformation of the par-
ticles can be clearly seen in the ASPH simulation.

6.2 Detonation, Explosion and Underwater Explosion

The explosion of a high explosive (HE) charge can rapidly
convert the original explosive charge into gaseous products
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Fig. 30 Close-up view of the
particle distributions near the
penetrated edge of the plate
obtained using SPH (a) and
ASPH (b) at 20 µs (from [124])

with extremely high pressure through a chemical reaction
process. The high pressure can lead to damages to nearby
personnel and structures. A typical HE explosion consists of
the detonation process through the HE at a constant detona-
tion velocity and the later expansion process of the gaseous
products to the surrounding medium (Fig. 31). The deto-
nation process is accompanied by the propagation of the
reactive wave that advances through the explosive with a
constant velocity related to the particular type of explo-
sive concerned. In a steady state detonation process, the re-
action rate is essentially infinite and the chemical equilib-
rium is attained. After the completion of the detonation, the
detonation-produced explosive gas expands outwards. This
gas expansion generally involves moving material interfaces
if the explosive is surrounded by outside medium or free sur-
faces if the explosion occurs in the vacuum.

When the detonation and explosion happen underwater,
the explosion physics can be more complicated. The under-
water explosion (UNDEX) [341, 342] produced by the deto-
nation of a submerged high explosive poses a serious threat
to the integrity of nearby structures. Issues related to the un-
derwater explosion include (1) the detonation process of the
high explosive (HE) charge, (2) the expansion process of the
detonation-produced explosive gas into the surrounding wa-
ter, and (3) the interaction of underwater shocks with the
nearby structures. In the detonation process, the high explo-
sive is converted into gaseous products at very high tempera-
ture and pressure through a violent chemical reaction, occur-
ring with extreme rapidity and releasing a great deal of heat.
The propagation of the detonation wave through an explo-
sive is so rapid that the gaseous products directly behind the
wave front are not in pressure equilibrium with the gas fur-
ther behind the wave front. As the detonation wave reaches
the interface between the explosive and the surrounding wa-
ter, a high pressure shock wave of step exponential type is
transmitted to propagate through the water, followed by a
series of bubble pulsation associated with the repeating ex-
pansion and contraction of the bubble of the explosive gas.
In the entire process of the underwater explosions, some
special features such as large deformations, large inhomo-

Fig. 31 Detonation of a 1D high explosive. The reaction end plane is
an interface of the pressurized high explosive charge and the explosive
gas produced in the detonation process

geneities, moving material interfaces, deformable bound-
aries, and free surfaces usually exist.

Theoretical solutions to the detonation and explosion of
high explosive, and underwater explosion are only limited
to some simple cases. Experimental studies need to resort to
dangerous and expensive firing trials, and sometimes cer-
tain physical phenomena related to the explosions cannot
be scaled in a practical experimental setup. Recently, more
and more analyses of detonation, explosion and underwa-
ter explosions are based on numerical simulations with the
advancement of the computer hardware and computational
techniques [8, 343, 344]. However, numerical simulations of
the high energy phenomena are generally very difficult for
the conventional grid based numerical methods. First, dur-
ing the detonation process in the explosion, a very thin reac-
tion zone divides the domain into two inhomogeneous parts
and produces large deformations. Second, in the expansion
process, there are free surfaces and moving interfaces in-
volved. It is even more difficult to simulate underwater ex-
plosion, as underwater explosion phenomena are subject to a
number of physical laws and properties, including the phys-
ical conditions at the interface of the explosive gas and the
surrounding water. The surrounding water has such prop-
erties as large density that is approximately 1000 times of
the air density, low compressibility, and large sound speed.
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Owing to the dynamic properties of the water (especially in
the regions surrounding the explosive gas), the pressures are
generally very high and the wave velocities are dependent
on the magnitude of the pressure and the displacement of
the water as it progresses. These complications for waves of
finite amplitude are expressed in much more difficult math-
ematical statements than those which suffice to explain the
propagation of small amplitude waves whose velocities are
practically independent on the magnitude of the pressure.

Traditional Lagrangian techniques such as the finite el-
ement methods are capable of capturing the history of the
detonation and explosion events associated with each ma-
terial. It is, however, difficult to apply practically, since the
severely distorted mesh may result in very inefficient small
time step, and may even lead to the breakdown of the com-
putation. Traditional Eulerian techniques, such as the finite
difference methods or finite volume methods, can well re-
solve the problem due to the large deformations in the global
motions, but it is very difficult to analyze the details of the
flow because of the lack of history and the smearing of
information as the mass moves through the fixed-in-space
Eulerian mesh [256]. Considering the difficulties of grid
based numerical models, the meshfree particle methods can
be a good alternate for simulating detonation, explosion and
underwater explosions [125, 136, 143, 247, 248, 252, 255,
256, 345–350].

Liu and his co-workers have conducted a series of origi-
nal work in extending the SPH method for simulating explo-
sion phenomena including high explosive detonation, explo-
sion [248, 351], shaped charge [247], and underwater explo-
sions [143, 255]. Since the detonation and expansion speed
are extremely high, the gaseous products can be assumed to
be inviscid and the explosion process is adiabatic. The Euler
equations can be used to model the explosion process to-
gether with a suitable equation of state. The SPH equations
of motion derived in Sect. 2.5 can thus be used to model high
explosive explosion phenomena, with the viscosity terms in
the momentum and energy equations ignored. For the explo-
sive gas, the standard Jones-Wilkins-Lee (JWL) [352] equa-
tion of state has been employed. These works not only show
the feasibility of applying the SPH method to explosion phe-
nomena, but also identify some important and unresolved
issues. A Gruneisen form of equation of state for water has
been used, which is a polynomial form either in compressed
or expanded state [353].

To show the effectiveness of the SPH method in deal-
ing with detonation and explosion, a benchmark one-
dimensional TNT slab denotation and explosion is provided
here, in which a 0.1 m long TNT slab detonates at one end
of the TNT slab.

If the solid wall boundary condition is used to prevent
material transport from everywhere, a symmetric setup can
be employed to deploy the particles, and thus makes the det-
onation of the 0.1 m long slab from one end to the other

Fig. 32 Pressure profiles along the TNT slab during the detonation
process (from [248])

end equivalent to the detonation of a 0.2 m long slab from
the middle point to both ends. Before detonation, particles
are evenly distributed along the slab. The initial smoothing
length is one and a half times the particle separation. After
ignition, a plane detonation wave is produced. According
to the detonation velocity, it takes around 14.4 µs to com-
plete the detonation to the end of the slab. Figure 32 show
the pressure profile along the slab at 2 µs interval from 2 to
14 µs by using 4000 particles. The dashed line in Fig. 32 rep-
resents the experimentally determined C-J detonation pres-
sure, which is, according to the Chapman and Jouguet’s hy-
pothesis, the pressure at the tangential point of the Hugo-
niot curve and the Rayleigh line, and represents the pres-
sure at the equilibrium plane at the trailing edge of the very
thin chemical reaction zone. For this one-dimensional TNT
slab detonation problem, the experimental C-J pressure is
2.1 × 1010 N/m2. It can be seen from Fig. 32 that, with the
process of the detonation, the detonation pressure converges
to the C-J pressure.

If the free boundary applies to the end of the detona-
tion, the explosive gas behind the C-J plane disperses out-
wards with the forward propagating detonation wave. A the-
oretical solution for this one-dimensional TNT detonation-
dispersion problem exists. Figure 33 shows the comparisons
of velocity profiles between theoretical values and the pre-
sented SPH results at 1 and 2 µs. The presented SPH results
are in close agreement with the theoretical values.

Figure 34 shows the pressure evolution in an underwa-
ter explosion process in a confined square chamber [143].
The initial outward propagating shock wave, reflection wave
from the solid wall, explosive gas expansion and later com-
pression can all be seen from the figure. Right after the det-
onation, a shock wave is generated in the water and prop-
agates outwards. At the same time, the rarefaction wave is
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Fig. 33 Velocity transients at 1 and 2 µs for the TNT slab detona-
tion-dispersion process (from [248])

also produced within the explosive gas and advances inward.
With the advancement of the shock wave through the wa-
ter, the gas bubble expands within the surrounding water.
The shock wave reaches the solid wall around the instant of
200 µs, and then reflects from the solid wall. This reflection
wave propagates inward and tends to compress the expand-
ing gas. At around 400 µs, the gas bubble reaches to the
maximum and then reduces. With the continued process of
shock reflection and explosive gas contraction, the gas bub-
ble then will reach a minimum size, and then expands after-
wards. This repeated process of expansion and contraction
maintains for many circles, and will finally reach equilib-
rium at larger time step.

6.3 Microfluidics and Micro Drop Dynamics

By integrating mechanical elements, sensors, actuators, and
electronic components using micro-fabrication technology,
micro-electro-mechanical systems (MEMS) are fast in re-
sponse, capable of achieving high spatial resolution, and
cost-effective due to the batch micromachining techniques.
Characterization of fluid flows in microfluidic devices has
increasingly becoming a very important topic since the flu-
idic behavior in MEMS is very different from what ob-
served in daily life. Flows in microfluidic devices usually
involve small or ignorable inertial force, but dominant vis-
cous, electro-kinetic and surface effects especially when the
surface-to-volume ratio increases [354]. Analytical or semi-
analytical solutions for microfluidics are generally limited
to a very few simple cases, whereas experimental studies
are usually expensive. Numerical simulation of flows in mi-
crofluidic devices, as an effective alternate, has been attract-
ing more and more researchers. However, simulation of mi-
crofluidic devices is not easy due to the involved complex
features including movable boundaries (free surfaces and

moving interfaces), large surface-to-volume ratio, and phe-
nomena due to micro scale physics. Numerical studies with
reliable models are needed to develop a better understanding
of the temporal and spatial dynamics of multiphase flows in
microfluidic devices.

On the other hand, drop formation and break-up in mi-
cro/nano scales are fundamentally important to diverse prac-
tical engineering applications such as ink-jet printing, DNA
and protein micro-/nano-arraying, and fabrication of parti-
cles and capsules for controlled release of medicines. Nu-
merical studies provide an effective tool to improve better
understanding of the inherent physical dynamics of drop for-
mation and breakup. Computational models for drop forma-
tion and breakup in micro/nano scales must be able to handle
movable boundaries such as free surfaces and moving inter-
faces, large density ratios, and large viscosity ratios. These
requirements together with micro scale phenomena and pos-
sible complex boundaries (fluid-fluid-solid contact line dy-
namics and fluid-fluid interface dynamics) in microfluidic
devices present severe challenges to conventional Eulerian-
grid based numerical methods such as FDM and FVM which
require special algorithms to treat and track the interfaces.
Algorithms based on Lagrangian-grid based methods such
as FEM have been shown to agree quantitatively with exper-
imental measurements, but they are only capable of model-
ing the dynamics of formation of a single drop or the dy-
namics until the occurrence of the first singularity.

A number of meso-scale methods have been developed
for simulating micro- and nano-fluidics such as the direct
simulation Monte Carlo (DSMC) for rarefied gas flows
[355–359], and dissipative particle dynamics for complex
fluid flows [41, 42, 118, 360]. Hoover and his co-workers
have first noted the similarity between the particle meth-
ods of molecular dynamics and smoothed particle hydro-
dynamics, and described the inherent links between them
[361–363]. Espanol and his colleagues, when studying the
dissipative particle dynamics method for meso-scale appli-
cations, proposed a fluid particle dynamics model, which
is actually a synthesis of dissipative particle dynamics and
smoothed particle dynamics [96, 364]. Later on, they in-
vented a smoothed dissipative particle dynamics for micro-
or meso-scale applications, by introducing a fluctuation
term into the conventional smoothed particle hydrodynam-
ics [365].

There have been a lot of literatures addressing the ap-
plications of SPH method to simulating microfluidics and
micro drop dynamics. Nugent and Posch described an ap-
proach to modeling liquid drops and surface tension for
a van der Waals fluid [236]. The cohesive pressure in the
equation of state for the van der Waals fluid actually acts
an attractive force between SPH particles. Melean and his
co-workers investigated the formation of micro drops using
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Fig. 34 Pressure distributions
in a confined underwater
explosion (from [143])

SPH method [155]. It was reported that the tensile instabil-
ity also exists when using SPH for simulating viscous liq-
uid drops and using an artificial stress proposed by Mon-
aghan et al. [145] can help greatly to remove the tensile
instability. Later on the group extended their work to the
simulation of coalescence of colliding van der Waals liquid

drops [240] and oscillation of viscous drops [239]. Liu et al.
applied the SPH method to multiphase fluid flow in micro
channels with applications to flip-chip underfill encapsula-
tion process with both isotropic and anisotropic smoothing
kernels [123, 366]. Li et al. proposed an SPH model for
simulating droplet collision and coalescence [367]. Zhang
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et al. developed an SPH model for free surface and solidi-
fication problems, which is also applicable to microfluidics
and micro drop dynamics such as droplet spreading, splash-
ing and solidification, substrate melting and deformation
[243–245]. A revised surface tension model was developed
for macro-scale particle methods including SPH by Zhou
et al. [246]. Fang et al. also developed an improved SPH
model for the simulations of droplet spreading and solid-
ification [238]. Tartakovsky, Meakin and their co-workers
have conducted a series of excellent work in applying the
SPH method to the modeling of surface tension and con-
tact angle [235], miscible flow in three-dimensional frac-
tures and the two-dimensional Rayleigh Taylor instability
[368], unsaturated flow in complex fractures [117], reactive
transport and precipitation [369], mixing-induced precipita-
tion [370] and non-aqueous phase liquid flow and dissolu-
tion [371].

There are basically two approaches in modeling the mul-
tiphase fluid flow in micro fluidic devices, and multiphase
drop dynamics. The first approach is to use the contin-
uum surface force (CSF) model proposed by Brackbill et al.
[372], and introduced the surface tension force into the mo-
mentum equation as presented in Sect. 5. This approach is
straightforward, and real physical parameters are used in the
simulation. It is important to note that the surface tension
parameters in this approach are user-input parameters, and
surface curvature needs to be calculated to get the surface
tension force. Some researchers have used this approach in
SPH method to model multiphase fluid flow [123, 373].

With this CSF model, the surface tension is added to the
momentum equation as an external source force. The surface
tension force F can be formulated as follows

F = 2γ k(x)V ∇V, (109)

where γ is the surface tension coefficient, k is the surface
curvature. V is the volume of a fluid cell. Let n be the surface
normal which can be computed from the gradient of the fluid
cell as n = ∇V , the surface curvature k is defined as

k = ∇ · n̂ = 1

|n|
[(

n

|n| · ∇
)

|n| − (∇ · n)

]
, (110)

where n̂ is the unit surface normal defined as

n̂ = n

|n| . (111)

For fluid cells near a solid wall, a wall adhesion model is
applied to adjust the surface normal through using the con-
tact angle θ that a fluid is assumed to make with the wall.
The dynamic contact angle can be different for different con-
tacting points. However, in micro channel flows with a small
buck velocity, the dynamic contact angle can be assumed to
be constant along the flow direction as the starting contact

Fig. 35 Snapshots of the moving flow leading edge in an SPH simula-
tion of a multiphase fluid flow in a micro channel using the CSF model
(from [123])

angle. The unit normal n̂ is adjusted as follows for fluid cells
close to the wall

n̂ = n̂w cos θ + n̂t sin θ (112)

where n̂w and n̂t are the unit vectors of the surface normal
(n = ∇V ) normal and tangential to the wall, respectively.
Thereby the unit surface normal n̂ for fluid cells near the
wall is adjusted using the contact angle. Whereas the unit
surface normal n̂ for fluid cells one cell away from the wall
is normally calculated. After determination of the unit sur-
face normal, the local surface curvature and therefore the
surface tension can be calculated.

Figure 35 gives an example of CSF model in simulat-
ing micro channel fluid flow. It is an underfill encapsulation
process. The encapsulant is used to fill the space between the
solder joints under the chip and the encapsulation process is
either driven by a capillary action or by a pressurized injec-
tion [123].

Another approach is to introduce an inter-particle interac-
tion force (IIF) implicitly in the SPH equations, and can be
termed as IIF model. This attractive force between every pair
of SPH particles contribute to the surface tension. Consider-
ing the SPH equations presented in Sect. 2.5, an equation of
state can be used to close the equation system. An equation
of state describes the relationship of the pressure p, density
ρ and the internal energy per unit mass, e, respectively. For
example, the van der Waals (vdW) equation of state can be
used to model the behavior of the fluid under consideration.
The van der Waals equation of state was derived from sta-
tistical mechanics as the mean-field limit for the free energy
density of a system of hard particles with a superimposed
long-range, attractive pair potential. It is realistic to display
a gas-to-liquid phase transition similar to that of a real fluid.
The van der Waals equation of state can written as

p = ρk̄T

1 − ρb̄
− aρ̄2, (113)
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and

e = k̄T − ρā. (114)

In the above two equations, k̄ = kB/T , where kB is the
Boltzmann’s constant. T is the system temperature. ā =
a/m2, and b̄ = b/m, where a and b are the parameter de-
scribing a van der Waals fluid. a controls the strength of the
attractive force, and b relates to the size of the particle.

The second part in (113) describes the cohesion between
particles. Using SPH particle approximation for pressure
(see (28)), and considering this cohesive pressure part sepa-
rately, we can get

Dvα
i

Dt
= 2a

N∑
j=1

mj

∂Wij

∂xα
i

. (115)

Similarly substituting the cohesive pressure into the en-
ergy (see (28)), it is possible to get its analogous contribution
to energy

Dei

Dt
= −a

N∑
j=1

mjv
β
ij

∂Wij

∂x
β
i

. (116)

It is clear that the attractive, long-range, inter-atomic
vdW force can be transformed into similarly attractive
forces between SPH particles. Equation (115) describes a
volume force on continuum scale to account for the forma-
tion of co-existing liquid-gas phases. Comparing with the
above-mentioned approach in using CSF model in calcu-
lating surface force, this approach does not need to locate
the surface, and then to calculate the local surface curva-
ture. Also, the surface tension is not user-input parameters,
while it is implicitly obtained from inter-particle interac-
tions. If the particles are distributed regularly (please refer
to Sect. 4.2 on particle consistency), the force obtained from
(115) vanishes for interior particles in both liquid and gas
phases. While for boundary particles, e.g., particles near
the gas-liquid interface, since the inter-particle interaction
force between different phases are generally different, a sur-
face force is produced, which is basically perpendicular to
the surface, pointing towards the dense phase. Nugent and
Posch identified that to obtain acceptable results, a large in-
fluencing area (e.g., two times the smoothing length for ap-
proximating other field variables and the first part in (113))
is necessary to conduct the particle approximations in (115)
and (116).

Figure 36 shows an example of IIF model for the for-
mation of a liquid drop. The initial square-shaped liquid
(Fig. 36a) gradually becomes rounded at the corner due to
the inter-particle interaction force, and finally forms a circu-
lar liquid drop.

Except for the inter-particle interaction force implicitly
calculated from the cohesive pressure in the van der Waals

Fig. 36 SPH simulation of the formation of a liquid drop using the IIF
model. (a) initial stage, (b) final stage of liquid drop

Fig. 37 The shape (cos(1.5π/kh)) of the inter-particle interaction
force expressed in (117) with k = 2

equation of state, Tartakovsky et al. added another inter-
particle interaction force, which can be written as

F ij = sij cos(1.5π/kh)r ij , (117)

where sij is an interaction coefficient. Figure 37 shows the
shape of the inter-particle interaction force expressed in the
above equation (cos(1.5π/kh) only, where k = 2). It is clear
that this inter-particle force is repulsive at short range, and
attractive at long-distance. Similar to inter-particle force cal-
culated from the cohesive pressure in the van der Waals
equation of state, this inter-particle also describes a volume
force on continuum scale and can account for the formation
of co-existing liquid-gas phases. The force obtained from
(117) also vanishes for interior particles in both liquid and
gas phases, with small fluctuation around the overall direc-
tion of the macroscopic density gradient. For boundary par-
ticles, e.g., particles near the gas-liquid interface, a surface
force is produced, pointing towards the denser phase. The
IIF approach is comparatively simple and straightforward
since it does not need to calculate the surface curvature,
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which is not an easy task for particle methods like SPH. One
problem is that as the IIF model implicitly calculates the sur-
face tension force with parameters from atomistic level, it
needs parameter calibration, which relates the physical pa-
rameters from atomistic level to continuum level.

6.4 Ocean and Coastal Hydrodynamics and Offshore
Engineering

Flow phenomena in ocean and coastal hydrodynamics and
offshore engineering are significantly important as they can
greatly influence the nearly personnel and structures. The
flow phenomena include

• wave dynamics (waver generation, wave breaking, and
wave interaction with other structures),

• dam breaking,
• water filling and water discharge (to and from a water tank

or reservoir),
• shallow water flows,
• entry of water, sloshing phenomena with fluid-solid inter-

action, and
• different other problems.

These phenomena involve special features, which make it
difficult for numerical simulation. For example, water waves
can propagate shoreward where they undergo changes in-
duced by the near-shore topography and increase in height.
Upon reaching the shoreline, they can break into pieces, and
travel inland for large distances with potential damage of
property and loss of life. Experimental setups for fluid flow
in coast hydrodynamics and offshore engineering are expen-
sive and only limited to laboratory applications. Numerical
simulation has thus become a great tool to predicting fluid
flow in ocean and coast hydrodynamics and offshore engi-
neering.

However, numerical simulation of fluid flow in these re-
lated areas is a formidable task as it involves not only com-
plex geometries and free surfaces, but also fluid-solid in-
teraction as well as other complex physics in a compara-
bly very large scale. In many circumstances, violent fluid–
structure interactions lead to air entrapment and multi-phase
flows, where the dynamics of the entrapped air at the im-
pact may play a dominant role during the process and con-
tribute to the high pressure maxima and pressure oscilla-
tions. Though conventional grid based methods like FDM,
FVM and FEM have achieved greatly in simulating fluid
flow in coast hydrodynamics and offshore engineering, there
is still a long way to go for practical engineering applica-
tions.

Smoothed particle hydrodynamics, due to its meshfree,
Lagrangian and particle nature, has been attracting more and
more researchers in coast hydrodynamics and offshore en-
gineering. From the very early simulation of a simple dam

break problem [112], there have been a lot of literatures ad-
dressing the applications of SPH method in related areas.

Shao and his colleagues simulated near-shore solitary
wave mechanics by an incompressible SPH method [374].
They later extended the work to simulation of wave break-
ing and overtopping with turbulence modeling [375], plung-
ing waves using a 2-D sub-particle scale (SPS) turbulence
model [376], solitary wave interaction with a curtain-type
breakwater [377], and water entry of a free-falling object
[190].

Frank and Reich addressed the conservation properties
of SPH applied to shallow water equation [378]. Ata and
Soulaimani proposed a stabilized SPH method for inviscid
shallow water flows [379]. Rodriguez-Paz and Bonet also
developed a corrected smooth particle hydrodynamics for-
mulation of the shallow-water equations [380].

Investigation of water wave including water wave gener-
ation, water-structure interaction, and water wave breaking
has been a very attractive application of the SPH method.
Gomez-Gesteira and Dalrymple had investigated wave im-
pact on a tall structure using a three-dimensional SPH
method [180]. The research group also investigated water
waves and waves breaking using the SPH method [175,
189]. Idelsohn and his co-workers applied the particle fi-
nite element method to solve incompressible flows with
free-surfaces and breaking waves [381]. Gotoh et al. de-
veloped an SPH-LES model for numerical investigation of
wave interaction with partially immersed breakwater [178].
They also simulated the coupled motion of progressive
wave and floating curtain wall by using the developed SPH-
LES model [177]. Gotoh and Sakai also addressed some
key issues in the particle method for computation of wave
breaking [183]. Recently, the research team developed a
corrected incompressible SPH method for accurate water-
surface tracking in breaking waves [185]. Crespo et al. pre-
sented an example of 3D SPH simulation of large waves mit-
igation with a dike [176]. Qiu studied the water waves gen-
erated by landslide [188]. Yim investigated the water wave
generation by a vertical plunger using RANS and SPH mod-
els [193]. Cleary and Prakash discussed the feasibility of us-
ing SPH method for modeling tsunami effects [205, 266].

There are some references addressing the entry of water,
e.g., air cushion effects in a wedge water entry [382], waves
produced by a falling mass into a reservoir [383], water entry
of a free-falling object [190], and wedge water entries [384].

Simulation of sloshing problems using SPH is a promis-
ing research direction. Iglesias et al. simulated the anti-roll
tanks and sloshing type problems [196]. Rhee and Engineer
studied liquid tank sloshing with Reynolds-averaged Navier-
Stokes [199]. Souto-Iglesias et al. assessed the liquid mo-
ment amplitude in sloshing type problems with smooth par-
ticle hydrodynamics [200]. Anghileri investigated the fluid-
structure interaction of water filled tanks during the impact
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Fig. 38 SPH simulation of the dam-break flow and impact against a
vertical wall at (a) single phase (water only) with free surface, and
(b) two phases (water and air) with moving interface (from [387])

with the ground [285]. Delorme et al. simulated the sloshing
loads in LNG tankers with SPH [385].

Figure 38 gives an example of the SPH simulation of the
dam-break flow and impact again a vertical wall at (a) sin-
gle phase (water only) with free surface, and (b) two phases
(water and air) with moving interface. The flow pattern of
flow along the surge front, the impact of fluid against the
right hand side vertical wall and the entrapment of air bub-
ble in water are in good agreement with the results from
other sources [386].

6.5 Environmental and Geophysical Flows

Environmental and geophysical flows are fundamentally im-
portant for human life and economic development. In large
scale, there are many typical environmental flow problems
including

• flood due to dam break, or overflow of river and reservoir,
• landslide, mudslide, mud-rock flow triggered by heavy

rain infiltration or even earth quake,
• sand/dust or dust storm,
• polluted liquid (e.g. oil) and air transport, and
• many others.

Unwanted environmental flows can be hazardous to nearby
people and structures. In general, these large scale environ-
mental flows are difficult to be accurately simulated and pre-
cisely predicted. On one hand, these large scale environmen-
tal flows involve complex geometries and arbitrarily mov-
ing interfaces. It is a formidable task to identify the origin
of the flows. Therefore, it is hard to determine the initial
and boundary condition for numerical simulations. On the
other hand, large scale environmental flows are associated
with complicated multiple fluid phases and multiple physics
with solid-liquid-air phase at different scales. Theses also
add difficulties to the numerical simulations for grid based
numerical models.

It is very appealing to use SPH to model such large-
scale environmental flow problems due to its meshfree, La-
grangian and particle nature. Actually in Sect. 6.4, some
large-scale environmental flow problems such as dam break-
ing and tsunami effects have been discussed. They are also
other references addressing the SPH applications in large-
scale environmental flow problems. Ghazali and Kamsin

presented a real time simulation and modeling of flood haz-
ard [206]. Shen et al. conducted SPH simulation of river ice
dynamics [233]. Kipfer and Westermann also investigated
the realistic and interactive flows in river hydrodynamics
[207]. Xu and Shen studied the fluid-structure interaction of
hydrodynamic damper during the rush into the water chan-
nel [388].

Landslide and mudslide as well as mud-rock flows can be
simulated using the SPH method. Cleary and his co-workers
discussed the feasibility of using SPH method for model-
ing dam break, tsunami, landslide and volcano flows [205,
266]. The SPH method is coupled with discrete element
method (DEM) for modeling solid-fluid interaction. Ataie-
Ashtiani and Shobeyri simulated landslide impulsive waves
by using incompressible smoothed particle hydrodynam-
ics [389]. Qiu presented a two-dimensional SPH simula-
tions of landslide-generated water waves [188]. McDougall
and Hungr developed a numerical model for the analysis
of rapid landslide motion across three-dimensional terrain
[216]. Pastor et al. proposed a depth-integrated, coupled
SPH model for flow-like landslides and related phenomena
[220].

There are more references with applications to other
large-scale environmental flow problems. Bui et al. devel-
oped an SPH model for large deformation and failure flows
of geo-material using elastic-plastic soil constitutive model
[209]. They also presented a numerical simulation of soil-
water interaction using the SPH method [210]. Laigle and
his colleagues developed an SPH-based numerical investi-
gation of mudflow and other complex fluid flow interactions
with structures [214].

Small scale environmental and geophysical flows are also
very important, but are usually difficult to simulate because
of the associated multiple fluid phases and multiple physics,
as well as the existence of complex geometries and arbitrar-
ily moving interfaces. For example, fluid motion in the va-
dose zone is very important for groundwater recharge, fluid
motion and contaminant transport. Flow through fractures
and fractured porous media can lead to exceptionally rapid
movement of liquids and associated contaminants [99, 390,
391]. The physics of fluid flows in unsaturated fractures and
porous media is still poorly understood due to the complex-
ity of multiple phase flow dynamics. Experimental studies
of fluid flow in fractures and fractured porous media are
limited, and in computer simulations it is usually difficult
to take into account the fracture surface properties and mi-
croscopic roughness. Predictive numerical models can be
divided into two general classes: volume-averaged contin-
uum models (such as those based on Richard’s equation)
and discrete mechanistic models. Knowledge of the physi-
cal properties of the fluids and the geometry of the fracture
apertures is required in both classes. Volume-averaged con-
tinuum models are more suitable for large-scale systems,
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Fig. 39 Snapshots of SPH
simulation of multiphase fluid
motion in a fracture at 4
representative stages

and they usually involve the representation of fractures as
porous media with porosity and permeability parameters ad-
justed to mimic flow within fractures. However, volume-
averaged continuum models are unable to describe the de-
tails of flow dynamics in fractures, they do not reproduce
the spatio-temporal complexity of multiphase fluid flow in
fractures, and they often fail to predict the rapid fluid motion
and contaminant transport observed in the fractured vadose
zone. Small-scale studies with discrete mechanistic models
are needed to develop a better understanding of the temporal
and spatial dynamics of fracture flows. However, the com-
plexity of fracture flow dynamics makes it difficult to de-
velop successful numerical models for fluid flows in fracture
networks. A broadly applicable model must be able to sim-
ulate a variety of phenomena including film flow with free
surfaces, stable rivulets, snapping rivulets, fluid fragmenta-
tion and coalescence (including coalescence/fragmentation
cascades), droplet migration and the formation of isolated
single-phase islands trapped due to aperture variability.

Realistic mechanistic models for multiphase fluid flows
in fracture and fractured porous media must be able to han-
dle moving interfaces, large density ratios (e.g., ≈1000 : 1
for water and air), and large viscosity ratios (e.g., ≈100 : 1
for water and air). These requirements combined with the
complex geometries of natural fractures present severe chal-
lenges to mechanistic models. Grid based numerical meth-
ods such as finite difference methods, finite volume meth-
ods and Eulerian finite element methods require special al-
gorithms to treat and track the interface between different
phases. However, continuum grid based numerical models
usually do not take account of the detailed void and obstacle
geometries, fluid-fluid interface dynamics within pores and
complex fluid-fluid-solid contact line dynamics. They rely
on constitutive equations that describe the coarse-grained
behavior and can, at least in principle, be derived from the
results of pore scale simulations or experiments. Therefore,
small-scale simulations with mechanistic models are needed
to develop a better understanding of the temporal and spatial

dynamics of multiphase flow through porous media. Pore-
scale flows have been studied extensively using grid based
methods including finite difference method [392], finite vol-
ume method [393, 394], and finite element method [395].
However, due to the difficulties associated with geometri-
cally complex boundaries, fluid-fluid-solid contact line dy-
namics, and fluid-fluid interface dynamics, it is difficult to
apply conventional grid based multiphase simulation meth-
ods based on computational fluid dynamics (CFD) coupled
with interface tracking algorithms [372, 396–398] to pore-
scale multiphase flow modeling.

The SPH method has been recently modified for much
smaller scale, typically low Reynolds number, applications
The performance of the SPH method was demonstrated for
two-dimensional single-phase flows through idealized, pore-
scale porous media composed of spatially periodic square
and hexagonal arrays of cylinders [202, 399], and two-phase
(miscible and immiscible) flows through pore-scale frac-
tures and fracture junctions [117, 368]. One obvious ad-
vantage of SPH over conventional grid based methods is
that SPH does not require explicit and complicated inter-
face tracking algorithms, and thus there is no need to explic-
itly track the material interfaces, and processes such as fluid
fragmentation and coalescence can be handled without diffi-
culty. SPH also does not require contact angle models since
contact angles can be naturally calculated from the shape of
the moving particle distributions, and can vary spatially and
temporally, depending on the dynamic balance of viscous,
capillary and gravitational forces. Figure 39 illustrates the
snapshots of SPH simulation of multiphase fluid motion in
a fracture at 4 representative stages. Water was injected into
the top entrance of the fracture using a syringe pump and
drained out through the bottom of the fracture.

7 Summary

Smoothed particle hydrodynamics (SPH) is a meshfree par-
ticle method, which not only uses particles as the computa-
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tional frame for interpolation or differencing, but also uses
the particles to carry the material properties. In this sur-
vey, the smoothed particle hydrodynamics method, and its
recent development in numerical algorithms and applica-
tions have been reviewed. In methodology and numerical
approximation, the basic concepts of kernel and particle ap-
proximations as well as different techniques for developing
SPH formulations have been addressed. Different smooth-
ing kernel functions have been reviewed with constructing
conditions provided. The emphasis is on the consistency
problem, which traditionally limits the accuracy of the SPH
method. A number of consistency restoring approaches have
been surveyed. An SPH formulation for discontinuity, a gen-
eral approach for restoring particle consistency, and a finite
particle method are described. Several important numerical
topics have been investigated, including (1) solid boundary
treatment, (2) representation of solid obstacles, (3) mater-
ial interface treatment and (4) tensile instability. In applica-
tions, different applications of the SPH mEthod have been
reviewed, with emphasis on (1) high strain hydrodynamics
with material strength, (2) high explosive detonation and ex-
plosions, and underwater explosion, (3) microfluidics and
micro drop dynamics, (4) coast hydrodynamics and offshore
engineering, and (5) environmental and geophysical flows.

The last decades have witnessed the great success of SPH
developments in methodology and applications, and there
are still many tasks and challenges remaining. To achieve
a reliable solution, the computational accuracy, consistency,
efficiency, stability and convergence need to be incorporated
into good SPH algorithms.

In general, SPH has great potential in many problems in
engineering and science. It has salient advantages over tra-
ditional grid based numerical models in treating large defor-
mation, tracking free surfaces, moving interfaces, and de-
formable boundaries, resolving moving discontinuities such
as cracks and shock waves. The attraction of the SPH
method has been showcased in diversified applications, as
reviewed in Sect. 7.

One obvious advantage is that the SPH method provides
a feasible physical model for non-continuum, as it has some
same features as the classic molecular dynamics method
and the dissipative particle dynamics method. Therefore it
would be very attractive to apply the SPH method to simu-
lating problems where the main concern of the object is a set
of discrete physical particles rather than a continuum, e.g.,
the interaction of stars in astrophysics, movement of mil-
lions of atoms in an equilibrium or non-equilibrium state,
dynamic behavior of protein molecules, and environmen-
tal flows with solid and fluid particles such as landslide and
mudslide. There is no need for discretization to begin with
for such situations. Also since SPH shares many similari-
ties with other particle methods such as MD and DPD, it is
natural to couple these three methods, from molecular dy-
namics (at nano- and micro-scales), to dissipative particle

dynamics (at meso-scales), and then to smoothed particle
hydrodynamics (at macro-scales) for simulations with mul-
tiple scale physics. It is attractive to develop reliable models
of length scale coupling for problems with multiple physics
and multiple scales, such as ink-jet printing, DNA and pro-
tein micro-/nano-arraying, and fabrication of particles and
capsules for controlled release of medicines.
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