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a b s t r a c t

A cell-based smoothed radial point interpolation method (CS-RPIM) based on the generalized gradient

smoothing operation is proposed for static and free vibration analysis of solids. In present method, the

problem domain is first discretized using triangular background cells, and each cell is further divided

into several smoothing cells. The displacement field function is approximated using RPIM shape

functions which have Kronecker delta function property. Supporting node selection for shape function

construction uses the efficient T2L-scheme associated with edges of the background cells. The system

equations are derived using the generalized smoothed Galerkin (GS-Galerkin) weak form, and the

essential boundary conditions are imposed directly as in the finite element method (FEM). The effects of

the number of divisions smoothing cells on the solution properties of the CS-RPIM are investigated in

detail, and preferable numbers of smoothing cells is recommended. To verify the accuracy and stability

of the present formulation, a number of numerical examples are studied to demonstrate numerically

the efficiency of the present CS-RPIM.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In the past decades, various meshfree methods including
smooth particle hydrodynamics [1], diffuse element method
(DEM) [2], element free Galerkin (EFG) method [3], reproducing
kernel particle method (RKPM) [4], finite point method (FPM) [5],
H–P clouds [6], meshless local Petrov–Galerkin (MLPG) method
[7], point interpolation method (PIM) [8], radial point interpola-
tion method (RPIM) [9], etc., have been proposed and applied in
more and more fields of particular engineering and scientific
problems [10]. In any numerical method creating shape functions
is an essential issue, and currently there are basically two major
types of methods: moving least squares (MLS) and point
interpolation method (PIM). The RPIM shape functions created
using local irregular nodes are preferred in many ways, because
(1) they have the Kronecker delta function property, which allows
straightforward imposition of essential boundary conditions and
(2) very irregularity distributed nodes can be used.

In the weak form meshfree methods, background cells are
commonly used to implement the Gaussian integration to
evaluate the stiffness matrix. Due to the complexity involved
using the Gauss integration, the nodal integration techniques have
ll rights reserved.

+86 7318822051.
been developed by performing integrals based on the nodes [11].
Beissel and Belytschko [11] demonstrated that the nodal integra-
tion of EFG resulted in a spatial instability due to the under
integration of the weak form. They proposed a stabilized
procedure to eliminate the spatial instability. Bonet and Kulase-
garam [12] presented a least-square stabilization technique to
eliminate spurious mode in nodal integration. Chen et al. [13]
proposed a stabilized conforming nodal integration using a strain
smoothing technique, and this method can eradicate spatial
instability in nodal integration and reproduce a linear field
exactly. Based on the strain smoothing technique [13], a general-
ized gradient smoothing technique has been suggested [14] to
accommodate discontinuous functions. The generalized gradient
smoothing technique forms the theoretical foundation for the
linearly conforming radial point interpolation method (LC-RPIM
or NS-RPIM) where discontinuous RPIM shape functions are used
[15]. It has been found that NS-RPIM can provide upper bound
solution in energy norm for models of not too coarse mesh for
force-driving problems. Although the NS-RPIM has been proven
spatially stable and convergent, it is not temporally stable, which
leads to the development of the edge-based smoothed radial point
interpolation method (ES-RPIM) [16]. It has been found that one of
the most significant features of all the methods using RPIM shape
functions is that it works ideally well for extremely irregularly
distributed nodes: the nodes can be virtually random. The
moment matrix will never be singular, as long as some basic
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rules are followed [10]. In addition, the RPIM shape functions
have, in theory, unlimited order of local consistence and hence
ideal for creating functions in G spaces [10]. These unique features
give the RPIM shape functions a special position in meshfree
methods. There are, however, rooms for further improvements on
both the solution accuracy and efficiency.

Incorporating meshfree techniques with the standard FEM, Liu
et al. [17] proposed a smoothed finite element method (SFEM) by
using the strain smoothing technique in FEM settings. The SFEM
further divides the elements into some smoothing cells, computes
the integrals along the edge of the smoothing cells, and has been
proven to have good properties. A more general setting based on
the cell-based smoothing idea and the polynomial PIM shape
functions is the cell-based smoothed PIM (or CS-PIM) [18]. Due to
the use of polynomial PIM shape functions, a carefully formulated
coordinate transformation is needed to avoid the singularity in
the moment matrix. Clearly in avoiding the singularity of the
moment matrix, the use of RPIM shape function is natural and
much more straightforward. In the CS-PIM and CS-RPIM, however,
only one smoothing cell per triangular background cell is used,
and hence the model can be on the soft side, leading to less
accurate solutions for some problems with weak constraints.

In the present work, we further improve the CS-RPIM aiming to
increase the stiffness of the model by using the SFEM idea of dividing
the background cells further into some smoothing cells. In the
present CS-RPIM, the problem domain is first discretized using
triangular background cells. The support nodes of each node for the
local RPIM approximation are selected based on the background
cells. The background triangular cells are further divided into several
smoothing cells, and the ‘‘smoothed’’ strains in each smoothing cell
are obtained using the generalized gradient smoothing technique
[19] which allows the use of discontinuous nodal shape functions
like the RPIM. The use of the generalized gradient smoothing
technique requires only numerical integrations along the edges of
the background cells, and the continuity of the assumed displace-
ment field using RPIM can be ensured along the edges of the
smoothing cells. The strains in the smoothing cells are assumed to be
constants that equal to the ‘‘smoothed’’ strains obtained using the
generalized gradient smoothing technique. Therefore there is no
need for any numerical integration in computing the stiffness
matrix, because the energy is simply a summation of that over all
the smoothing cells. To examine the performance of the proposed
method, a series of benchmark examples is presented, and excellent
results are obtained demonstrating the efficiency and accuracy of
the present CS-RPIM method.

2. Radial point interpolation method

This section summarizes the RPIM approximation for the field
variables using local nodes and the radial basis functions (RBF)
augmented with polynomial basis functions [10]. Consider a domain
with a set of arbitrarily scattered points xi, (i ¼ 1, 2,y, n ), n is the
number of nodes in the local support domain. The approximation of
a function u(x) in support domain can be expressed in the form of

uðxÞ ¼
Xn

i¼1

RiðxÞai þ
Xm

j¼1

PjðxÞbj ¼ RT
ðxÞaþ PT

ðxÞb ð1Þ

where Ri(x) is radial basis function, ai the unknown coefficient for
functions Ri(x), bj the coefficient for polynomial basis Pj(x), n the
number of field nodes in the local support domain and
m determined according to the polynomial basis selected. When
m ¼ 0, pure RBFs are used. Otherwise, the RBF is augmented with m

terms of polynomial basis functions. In the present work, the multi-
quadrics RBF (MQ-RBF) [19] is used, which has the following form:

RiðxÞ ¼ ½ðx� xiÞ
2
þ ðy� yiÞ

2
þ ðacdcÞ

2
�q ð2Þ
where q and ac are two shape parameters, which are real and
arbitrary and have been examined in detail by Liu [10], dc is the
equivalent length of the background cell.

The polynomial basis function for two-dimensional domains
has the following form:

PT
ðxÞ ¼ ½1; x; y; . . .� ð3Þ

The coefficients in Eq. (1) can be determined by enforcing the
field function to be satisfied at the n nodes within the local
support domain of the point of interest x. This leads to n linear
equations, which can be expressed in the matrix form as

Us ¼ Rqaþ Pmb ð4Þ

where Us is the vector of function values

Us ¼ fu1; u2; . . . ; ung
T ð5Þ

Rq is the moment matrix of RBFs given by

Rq ¼

R1ðx1Þ R2ðx1Þ � � � Rnðx1Þ

R1ðx2Þ R2ðx2Þ � � � Rnðx2Þ

� � � � � � � � � � � �

R1ðxnÞ R2ðxnÞ � � � RnðxnÞ

2
66664

3
77775

n�n

ð6Þ

and matrix Pm is defined as

Pm ¼

p1ðx1Þ p2ðx1Þ � � � pmðx1Þ

p1ðx2Þ p2ðx2Þ � � � pmðx2Þ

^ ^ ^ ^

p1ðxnÞ p2ðxnÞ � � � pmðxnÞ

2
66664

3
77775 ð7Þ

As there are n+m variables in Eq. (4), the additional m

equations should be added by using the following constraint
conditions [20]:

Xn

i¼1

pjðxkÞai ¼ 0; j ¼ 1;2; . . . ; m ð8Þ

Combining Eqs. (4) and (8) yields the following set of equations
in the matrix form

~Us ¼
Us

0

� �
¼

Rq Pm

PT
m 0

" #
a

b

� �
¼ G

a

b

� �
ð9Þ

Solving Eq. (9) yields

a

b

� �
¼ G�1 Us

0

� �
ð10Þ

The approximation of function u(x) is finally expressed as

uðxÞ ¼ ½RT
qðxÞP

T
mðxÞ�G

�1 Us

0

� �
¼ /ðxÞUs ð11Þ

In Eq. (11), u(x) is RPIM shape functions corresponding to the
nodal value and given by

/ðxÞ ¼ ½j1ðxÞ j2ðxÞ � � � jnðxÞ � ð12Þ

in which

jkðxÞ ¼
Xn

i¼1

RiðxÞGði;kÞ þ
Xm
j¼1

pjðxÞGðnþj;kÞ ð13Þ

where Ḡ(i,k) is the element of matrix G�1. An approximation
function u(x) can be expressed as

uðxÞ ¼
Xn

i¼1

jiðxÞui ð14Þ

The present shape functions possess the reproducing proper-
ties due to the addition of polynomial basis, also satisfy the Delta
function properties and partition of unity, and always exist
because of the adoption of RBFs.
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Fig. 1. The problem domain is divided into triangular background cells. Each

triangular cell is called parent cell. The kth parent cell is further divided into SC

smoothing cells.
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3. Brief of basic equations

A solid mechanics problem of static elasticity can be described
by equilibrium equation in the domain O which can be given by

LTrþ b ¼ 0 ð15Þ

where L is differential operator matrix defined as

L ¼

@

@x
0

0
@

@y
@

@y

@

@x

2
66666664

3
77777775

ð16Þ

rT
¼ {sxx, syy, sxy} is the stress vector and bT

¼ {bx, by} is the
body force vector.

The stresses relate the strain via the constitutive equation as
follows:

r ¼ De ð17Þ

in which D is the matrix of material constants that defined as
follows:

D ¼
E

1� n2

1 n 0

n 1 0

0 0
1� v

2

2
664

3
775 Plane stress

D ¼
Eð1� nÞ

ð1� nÞð1� 2nÞ

1
v

1� v
0

v

1� v
1 0

0 0
1� 2v

2ð1� vÞ

2
6666664

3
7777775

Plane stain

ð18Þ

where E is Young’s modulus and n is Poisson’s ratio.
In Eq. (17), eT

¼ {exx, eyy, 2exy} is the vector of strains that
relates to the displacements by the following compatibility
equation:

e ¼ Lu ð19Þ

where u ¼ {ux, uy}T is the displacement vector.
Boundary conditions are given as follows:

u ¼ uG on Gu ð20Þ

nTr ¼ tG on Gt ð21Þ

where uG is the specified displacement on the essential boundary
Gu, tG is the given traction on the natural boundary Gt, and n is the
unit outward normal matrix expressed as

n ¼

nx 0

0 ny

ny nx

2
64

3
75 ð22Þ

4. Generalized smoothed strain

In the present work, the problem domain is first discretized
with three-node triangular cells, which can always be generated
efficiently and automatically without much manual operation.
Such a background triangular cell is termed as ‘‘parent’’ cell for
convenience in our discussion. The edge of a parent cell is called
‘‘cell edge’’. Each ‘‘parent’’ cell is further divided into some non-
overlapping smoothing cells Ok ¼ [C ¼ 1

SC Ok(C), as shown in Fig. 1.
The edge of the smoothing cell is called ‘‘segment’’. All the
segments of the smoothing cell form the boundary of the
smoothing cell, and the boundary is denoted as Gk(C). The strain
field in the Cth smoothing cell Ok(C) in Ok is assumed constant that
is approximated using following generalized gradient smoothing
technique [14]:

ekðCÞ �
1

AkðCÞ

Z
GkðCÞ

n � uðxÞdG ð23Þ

where u is the assumed displacements using RPIM shape
functions that can be discontinuous in the smoothing cell Ok(C),
Ak(C) the area of the Cth smoothing cell, and n the outward normal
matrix containing the components of the outward normal vector
on the boundary Gk(C). Note when the assumed displacement
is continuous, ekðCÞ is the so-called smoothed strain: strain
obtained from the compatible strain field via smoothing
operation. However, when the assumed displacement is
discontinuous, ekðCÞ does not exist, and thus rigorously speaking
it cannot be called smoothed strain, although we often termed it
as ‘‘smoothed’’ strain. A better name for ekðCÞ might be constructed

strain via boundary flux approximation [10].
Substituting Eq. (14) into Eq. (23), the smoothed strain can also

be written in matrix form of

ekðCÞ ¼
1

AkðCÞ

XNP

i¼1

�Z
GkðCÞ

n � /iðxÞdG
�

ui ¼
XNP

i¼1

B
i

kðCÞui ð24Þ

where NP is the number of the supporting nodes of point x,
ui ¼ {ui, vi}

T is the displacement vector at node i, and B̄k(C)
i is the

smoothed strain matrix given by

B
i

kðCÞ ¼

b
i

kxðCÞ 0

0 b
i

kyðCÞ

b
i

kyðCÞ b
i

kxðCÞ

2
66664

3
77775 ð25Þ

in which

b
i

kxðCÞ ¼
1

AkðCÞ

XNsgem

I¼1

½nIxlI
XNG

J¼1

jiðxIJÞ�b
i

kyðCÞ

¼
1

AkðCÞ

XNsgem

I¼1

½nIylI
XNG

J¼1

jiðxIJÞ� ð26Þ

where lI is the length of Ith segment of the smoothing cell, Nsgem

the number of the segment of the smoothing cell, NG the number
of the Gauss points used in each segment, nIx and nIy the
components of the outward unit normal to the Ith boundary
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Fig. 2. Division of a parent cell into SC smoothing cells. The circle presents the field

node, the square denotes the integration sampling point. SC ¼ 1 means only one

smoothing cell for each background parent cell; SC ¼ 3 means three smoothing

cells for each parent cell; SC ¼ 4 means four smoothing cells for each parent cell.
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Fig. 3. Supporting node selection for RPIM shape function construction. For

interior point xi in a cell i, the supporting nodes are i1�i11. For on-edge point xj on

an edge j, nodes j1�j7 are selected as the supporting nodes.
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segment, and xIJ the coordinate vector of the Jth gauss point on the
Ith segment.

One assume that the material parameters E, u are same over a
smoothing cell, the smoothed stress in smoothing cell Ok(C) can be
easily obtained by

rkðCÞ ¼ DekðCÞ ð27Þ

5. Discretized system equations

5.1. Static analysis

We now seek for a weak form solution of displacements that
satisfies the following generalized smoothed Galerkin (GS-
Galerkin) weak form that allows the use of discontinuous
displacement functions [21]Z

O
deTrdO�

Z
O
duTbdO�

Z
Gt

duTtGdG ¼ 0 ð28Þ

Substituting Eqs. (14), (24) and (27) into Eq. (28), a set of
discretized algebraic system equations can be obtained in the
following matrix form:

Kd� f ¼ 0 ð29Þ

where f is the force vector defined as

f ¼
Z

O
UT
ðxÞbdOþ

Z
Gt

UT
ðxÞtGdG ð30Þ

in which UT(x) is the shape function vector to build force vector.
In Eq. (29), K̄ is the (global) smoothed stiffness matrix

assembled in the form of

Kij ¼
XNcell

k¼1

KijðkÞ ð31Þ

where the summation means an assembly process same as the
practice in the FEM, Ncell is the number of the background cells of
the whole problem domain O, and K̄ij(k) is the stiffness matrix
associated with Ok that is computed using

KijðkÞ ¼
XSC

C¼1

Z
OkðCÞ

ðB
i

kðCÞÞ
TDðB

j

kðCÞÞdO ¼
XSC

C¼1

ðB
i

kðCÞÞ
TDðB

j

kðCÞÞAkðCÞ ð32Þ

in which SC is number of the smoothing cells, Ak(C) and B̄k(C) are
the area and smoothed curvature-deflection matrix of the Cth
smoothing cell, respectively.

5.2. Vibration analysis

The discretized dynamic equilibrium equation is obtained
using the GS-Galerkin weak form by simply treating the dynamic
inertial force as an ‘‘external’’ forceZ

O
deTrdO ¼

Z
O
rduT €udO ð33Þ

where r is the density of the material, and ü the accelerations can
be expressed in terms of the nodal accelerations üi and the shape
functions ui (x)

€uðxÞ ¼
Xn

i¼1

/iðxÞ €u i ð34Þ

Substituting Eqs. (24), (27) and (34) into Eq. (33) yields

Ku�M €u ¼ 0 ð35Þ

where K̄ is the smoothed stiffness matrix given in Eq. (31), and M
is the mass matrix given by

MðkÞ ¼ diagfm1 m2 m3g ð36Þ
where M(k) is sub-matrices of the mass matrix corresponding to
cell k, and mi is the lumped mass at the node i given by

mi ¼ diagfðrAk=3Þ ðrAk=3Þg ð37Þ

A general solution to Eq. (35) can be written as

u ¼ Zpeiopt ð38Þ

Substituting Eq. (38) into Eq. (35) yields the eigen equation

ðK �o2
pMÞZp ¼ 0 ð39Þ

where op is the natural frequency associated with the pth mode
and Zp is the corresponding eigenvector.
6. Numerical implementation

6.1. Division of smoothing cells and supporting node selection

In the present work, the problem domain is first discretized
with background parent cells. Each parent cell is then further
divided into SC smoothing cells. As shown in Fig. 2, triangular
background cell with 1, 3 and 4 smoothing cells are considered in
this work.

Only shape functions of the integration points on boundary of
the smoothing cells need to be evaluated. In constructing the
RPIM shape functions, supporting nodes selected using the T2L-
scheme introduced by Liu and Zhang [16]. The T2L-scheme selects
two layers of nodes to perform interpolation based on triangular
cells. As shown in Fig. 3, for the point of interest xi located in a cell,
the first layer of nodes refers the three nodes i1, i2 and i3 of the
home cell i, and the second layer contains those nodes which are
directly connected to the three nodes of the first layer. For the



ARTICLE IN PRESS

Fig. 4. Node distribution and background cells used for the standard patch test:

(a) and (b) regular; (c) and (d) irregular.
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point of interest xj local on an edge j, the first layer of nodes refers
the two nodes j1 and j2 of the edge j and the second layer contains
those nodes which are directly connected to the two nodes of the
first layer. This scheme can usually select sufficient but not-too-
excessive nodes and leads to less time consuming than the
traditional schemes used in meshfree methods, in which circular
supporting domain is used [10]. We can use this scheme to create
RPIM shape functions with high order of consistence for a point of
interest and for extremely irregularly distributed nodes.

6.2. Conforming and non-conforming models

6.2.1. On imposing the essential boundary conditions

Due to the high order nature of the RPIM shape functions, care
must be taken in treating lower order essential boundary
conditions. For example, in the standard patch tests, linear
variation of displacements on the boundary of the problem
domain (patch) needs to be imposed. In doing so, we have two
schemes: using the RPIM shape functions as per normal, and using
linear polynomial interpolation for points on the boundary of the
problem domain (patch). These two schemes are denoted as SCn

and SCn-L, respectively, in which n denotes the number of
smoothing cells. In the numerical examples, we will examine in
detail the effects of these two schemes.

6.2.2. On conformability

In this work, the RPIM shape functions are created using the
MQ-RBF augmented with the linear polynomial basis (m ¼ 3), and
the shape parameters q is taken as 1.03, ac is taken as 0.35. Some
of the reasons for such choices can be found in [22].

It is known that the nodal RPIM shape functions constructed
using local nodes are incompatible, meaning that it is discontin-
uous at locations where the supporting nodes in the support
domain are updated [10]. The present CS-RPIM can have two
implementations: conforming and non-conforming. In the con-
forming CS-RPIM, for all the ‘‘interior’’ points on the segments
located entirely within a parent cell, the set of RPIM shape
functions created are the same, due to the use of the same nodes
selected by the T2L-scheme associated with the parent cell. For all
the ‘‘on-edge’’ points on the segments that coincide with a cell-
edge, the set of RPIM shape functions are created using the nodes
selected using the T2L-scheme associated with the cell-edge.
Therefore, the RPIM shape functions for these ‘‘interior’’ points are
different from those for the ‘‘on-edge’’ points. For each triangular
parent cell, we need to create four sets of RPIM shape functions:
one set for these ‘‘interior’’ points and three sets for each of the
three edges of the parent cell. Of course, these three sets of shape
functions for cell edges can be shared by the corresponding
neighboring parent cell. When these four sets of RPIM shape
functions are used with the SCn-L scheme, the CS-RPIM model is
conforming, because the compatibility of the nodal RPIM shape
functions on all the smoothing cell edges are ensured in this
implementation.

In the non-conforming CS-RPIM, we use the set of ‘‘interior’’
RPIM shape functions of a parent cell also for all the ‘‘on-edge’’
points on the parent cell. In this case only one set of RPIM shape
functions is needed for each parent cell, and it will be cheaper. In
this case, however, the model becomes non-conforming regard-
less of SCn-L or SCn-L schemes are used, because the nodal
RPIM shape functions on the edges of the parent cell are not
continuous.

In addition, when the four sets of RPIM shape functions are
used but with the SCn scheme, the CS-RPIM model is still non-
conforming due to the improper enforcement of the essential
boundary conditions.
The conforming CS-RPIM can, but the non-conforming
CS-RPIM cannot pass the standard patch test, as will be shown
in the next section. The standard patch test is a straightforward
way to examine numerically whether or not a model is
conforming or non-conforming.

6.3. Patch test

Satisfaction of the standard patch test requires that the
displacements of all the interior nodes inside the patch follow
‘‘exactly’’ (to machine precision) the same linear function of
imposed displacement on the boundary of the patch. Numerically,
passing the standard patch test can ensure a numerical method
convergence to the exact solution [23].

Considering a square patch, the regularly and irregularly
distributed nodes with the triangular meshes are depicted in
Fig. 4. A prescribed linear displacement field is imposed on the
boundary Gu of the patch are computed using

u ¼ 0:001ðxþ yÞ v ¼ 0:001ðx� yÞ ð40Þ

The material properties of patch are E ¼ 1.0 and n ¼ 0.25. To
satisfy the patch test, the linear displacement field approximated
exactly, and the numerical solution at any interior nodes should
be in exact agreement the analytic ones given in Eq. (40). To
examine the numerical error precisely, an error norm in displace-
ment is defined as

Ed ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNnode

I¼1

ðuexact
I � unum

I Þ
T
ðuexact

I � unum
I Þ

PNnode

I¼1

ðuexact
I Þ

T
ðuexact

I Þ

vuuuuuut ð41Þ

where the superscript num denotes the displacement vector
obtained using numerical methods, exact denotes the exact or
analytical solution, and Nnode is the number of total field nodes.
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Table 1
Displacement error norm of numerical results for the standard patch test using

both compatible and incompatible CS-RPIM models.

Regularly distributed nodes Irregularly distributed nodes

SC1-L (CS-RPIM) 6.22970198E�15 Pass 9.84633670E�15 Pass

SC1 1.05153749E�03 Not pass 6.59095620E�03 Not pass

SC3-L 5.44769659E�15 Pass 6.55150660E�15 Pass

SC3 7.48529146E�04 Not pass 3.65510243E�03 Not pass

SC4-L 5.06675634E�15 Pass 8.00943565E�15 Pass

SC4 6.77383258E�04 Not pass 3.54213201E�03 Not pass L

D

x

y

P

Fig. 5. Cantilever beam subjected to a parabolic traction on the right edge of the

beam.
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Table 1 lists the displacement norm errors of the numerical
results for standard displacement patch test using both regularly
and irregularly distributed field nodes. It can be found that all the
conforming CS-RPIM models (four sets of RPIM shape functions
per parent cell with the SCn-L scheme) can pass the patch test to
the machine accuracy. All the non-conforming CS-RPIM models
(four sets of RPIM shape functions per parent cell with the SCn

scheme) cannot pass the patch test and error is of the order of
E�03 or E�04.

Note also that although a non-conforming CS-RPIM model cannot
pass the patch test, it can produce good (and even better) results for
numerical examples which will be shown in next section. Because
the non-conforming CS-RPIM models are also cheaper, it may be
worthwhile to study them. However, the convergence of such non-
conforming models has not yet been proven theoretically, and hence
should be used with auction. In this work we study only the non-
conforming CS-RPIM models using four sets of RPIM shape functions
per parent cell with the SCn scheme.

7. Numerical examples

In this section, examples for static and free vibration of solids
are presented. It must be point out that the scheme SC1-L in this
paper is same as the CS-RPIM proposed in [18], and thus it serves a
good comparison. The numerical results obtained from the
present method are compared with SC1-L (CS-RPIM) and FEM
for showing the effectiveness of the present method.

7.1. Cantilever beam problem

A cantilever beam with length L and height D is studied as
benchmark problem to test the convergence of the method, which
is subjected to a parabolic traction at the free end as shown in
Fig. 5. The beam is assumed to have a unit thickness so that plane
stress condition is valid. The analytical solution from [24] can be
given by

uxðx; yÞ ¼
Py

6EI
ð6L� 3xÞxþ ð2þ nÞ y2 �

D2

4

� �	 

uyðx; yÞ

¼
�P

6EI
3ny2ðL� xÞ þ ð4þ 5nÞD

2x

4
þ ð3L� xÞx2

	 

ð42Þ

where I ¼ D3/12 is the moment of inertia for the beam.
The stresses corresponding to the displacement equation are

sxxðx; yÞ ¼
Py

I
ðL� xÞ; syyðx; yÞ ¼ 0;sxyðx; yÞ ¼

�P

2I

D2

4
� y2

� �
ð43Þ

The related parameters for the problem are: E ¼ 3.0�107 Pa,
n ¼ 0.3, L ¼ 48 m, D ¼ 12 m and P ¼ 1000 N.

Using the same set of triangular meshes, the cantilever beam is
studied using the present CS-RPIM method. For comparison, this
problem is also studied using FEM triangular element (T3) with
the same distributed field nodes. In the numerical computations,
the displacement boundary on the left uses the exact displace-
ments obtained from Eq. (42) and the loading boundary uses the
distributed shear stresses in Eq. (43).
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Fig. 6 plots the convergence of the solutions in displacement
error norm for the cantilever beam solved using different
methods. The mesh size parameter Dh is taken to be the
average nodal spacing. It can be found that all presented
methods are more accurate than FEM (T3). SC3-L gives the best
results as compared to the exact ones. SC4-L presents a very high
displacement convergence rate, which is much higher even than
the theoretical value of 2.0 [23].

Fig. 7 shows the convergence of solutions in energy norm for
the cantilever beam solved using different methods. The energy
error norm is defined as follows:

Ee ¼
1

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
Oðeexact � enumÞ

TDðeexact � enumÞdOR
OðeexactÞ

TDðeexactÞdO

vuut ð44Þ

where A is the area of the problem domain. It is found that all
presented schemes converge faster compared to the FEM (T3).
SC4-L gives the highest convergence rate, which is higher than
1.0 that is theoretical value of weak formulation, but lower than
1.5 that is the ideal theoretical value of the W2 formulation. We
find that the accuracy of the energy norm of the non-conforming
models (with SC1, SC3 and SC4 schemes) is a little better than
corresponding conforming models (with SC1-L (CS-RPIM), SC3-L
and SC4-L schemes).

To study the convergence property, the strain energy of the
cantilever beam is computed using different methods and plotted
in Fig. 8. It is easy to see that SC1 gives upper bound solutions and
other methods give lower bound solutions. All the present CS-
RPIM models converge very fast to the analytical solution and all
provide better accuracy and efficiency than FEM (T3). From these
results, one can also find that the numerical model becomes stiff
when the number of smoothing cell increases. This finding is in
line with those reported in [17] for SFEM models.

The vertical displacements at the node on the middle of the
right edge of the cantilever beam computed using different
methods are plotted in Fig. 9. The results again show that the
presented methods can give much better results than FEM (T3)
with the same mesh. The CS-RPIM-SC3 gives the best results
compared with other schemes plotted in the figure. Figs. 10 and 11
illustrate the distribution of the normal stress sx and shear stress



ARTICLE IN PRESS

Fig. 12. Irregular meshes with different irregularity factor air: (a) air ¼ 0.1; (b) air ¼ 0.5.
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Fig. 15. Domain discretization for the infinite plate with a hole (9�9 nodes).
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sxy on the cross-section x ¼ L/2 of the beam. It can be found that
the results obtained using present methods agree well with the
analytical solutions.

To study the sensitivity of present method to mesh distortion,
the cantilever beam is studied using a 32�8 mesh. For the
distorted mesh, coordinates of the irregular nodes are generated
using

xir ¼ xþDx � rc � air yir ¼ yþ Dy � rc � air ð45Þ

where Dx and Dy are the initial regular nodal spacing in x and y

direction, respectively, rc a computer generated random number
between �1.0 and 1.0, air a prescribed irregularity factor chosen
between 0.0 and 0.5. Irregular meshes with air ¼ 0.1 and air ¼ 0.5
are shown in Fig. 12.
Fig. 13 shows the relative errors of strain energy for different
methods using irregularly distributed field nodes. It is clearly
shown that the present CS-RPIM with SC3, SC3-L, SC4 and SC4-L
schemes are insensitive to the mesh distortion even that the
meshes are severely distorts with air ¼ 0.5. The relative errors of
strain energy for all the schemes are less than 1% even when the
severely irregular meshes are used.
7.2. Infinite plate with a circular hole

An infinite plate with a circular hole (radius equal to a)
subjected to a unidirectional tensile load (p) in the x direct is
studied. Owing to the symmetry, only one quarter is modeled as
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shown in Fig. 14. Symmetry conditions are imposed on the left and
bottom edges, and the inner boundary of the hole is traction free.
The analytical solution for the stress can be given in [24]

sxx ¼ p 1�
a2

r2

3

2
cos 2yþ cos 4y

� �
þ

3a4

2r4
cos 4y

	 

syy

¼ �p
a2

r2

1

2
cos 2y� cos 4y

� �
þ

3a4

2r4
cos 4y

	 

sxy

¼ �p
a2

r2

1

2
sin 2y� sin 4y

� �
�

3a4

2r4
sin 4y

	 

ð46Þ

where r and y are the polar coordinates and y is measured
counterclockwise from the positive x-axis. The displacement fields
can be calculated as follows:

ur ¼
p

4G
r
kþ 1

2
þ cos 2y

� �
þ

a2

r
½1þ ðkþ 1Þcos 2y� �

a4

r3
cos 2y

� �
uy

¼ �
p

4G
r � ð1� kÞ a

2

r
þ

a4

r3

	 

sin 2y

ð47Þ
where

G ¼
E

2ð1þ nÞ
;k ¼

3� 4n for plane stress
n

1� n
for plane strain

8<
: ð48Þ

E is Young’s modulus and n is Poisson’s ratio.
We studied the problem under plane strain conditions and

traction boundary conditions are imposed on the upper and right
edges with the analytical stresses obtained using Eq. (46). The
parameters for this problem are: a ¼ 1 m, b ¼ 5 m, p ¼ 1 Pa,
E ¼ 1�103 Pa and n ¼ 0.3. The 5�5, 9�9, 17�17, 25�25,
33�33 and 49�49 distributed nodes are used for computation
and a 9�9 node distribution is shown in Fig. 15.

Fig. 16 plots the convergence of the solutions in displacement
error norm for the problem of infinite plate with a circular hole
solved using different methods. It can be found that SC3-L and
SC4-L exhibit the better accuracy compared with other methods
using the same background cells and SC4-L has the highest
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Table 2
First six natural frequencies (�104) of a cantilever beam using different CS-RPIM models.

No. of nodes Mode SC1-L (CS-RPIM) SC1 SC3-L SC3 SC4-L SC4 Ref. [25]

63 1 0.0887 0.0846 0.0887 0.0830 0.0937 0.0848 0.0926

2 0.5363 0.5076 0.5322 0.4983 0.5604 0.5094 0.5484

3 1.2836 1.2825 1.2843 1.2833 1.2846 1.2836 1.2832

4 1.4251 1.3405 1.4130 1.3192 1.4864 1.3489 1.4201

5 2.6106 2.4430 2.6014 2.4143 2.7370 2.4702 2.5290

6 3.8386 3.7318 3.8495 3.7103 3.8535 3.7953 3.7350

306 1 0.0828 0.0824 0.0826 0.0823 0.0831 0.0826 0.0844

2 0.4960 0.4937 0.4957 0.4935 0.4987 0.4951 0.5051

3 1.2827 1.2826 1.2828 1.2827 1.2829 1.2827 1.2828

4 1.3060 1.2987 1.3062 1.2994 1.3141 1.3036 1.3258

5 2.3728 2.3569 2.3752 2.3608 2.3906 2.3687 2.3993

6 3.6188 3.5903 3.6256 3.6003 3.6512 3.6129 3.6432

Fig. 24. First 12 modes of the cantilever beam by CS-RPIM with SC3-L.
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convergence rate (2.5071). For this numerical example, ones can
find results of SCn-L are much better than those of SCn, especially
for three smoothing cells and four smoothing cells.

Fig. 17 plots the convergence of the solutions in energy error
norm for the problem of infinite plate with a circular hole solved
using different methods. All methods are found converging well.
SC4-L again gives the highest convergence rate (1.1877) in energy
norm as in displacement norm, and it is higher than the theoretical
value 1.0. It is observed that all of the SCn-L schemes have better
accuracy and higher rate of convergence than FEM (T3).

Fig. 18 shows the process of strain energies converging to the ana-
lytical one for the infinite plate with a circular hole using different
methods. For strain energies, SCn-L schemes have much better
accuracy than SCn schemes and FEM. SC3 and SC4 have the same
level accuracy as FEM, they all better than SC1. SC1-L (CS-RPIM)
converges to the analytical solution as the upper bound solution,
whereas SC3-L and SC4-L converge to the analytical one as the lower
bound solution. From the results, we still find that the numerical
model becomes stiff when the number of smoothing cell increases.

The strain distributions are shown in Fig. 19 for SC3 and SC3-L
schemes. It can be found that the results of SC3-L agree well with
analytical ones. The results of SC3 are less accurate compared
with those of SC3-L and analytical ones, especially in the area
near the boundary of the problem. This is because the SC3-L
using the linear interpolation on the boundary which leads to the
model conforming, and the stress is more smoothing than non-
conforming model SC3.

7.3. Semi-infinite plate

A two-dimensional half space subjected to a uniform pressure
on the upper surface within a finite range is studied, as shown in
Fig. 20. Plane strain condition is considered and the analytical
stresses are given by [24]

sxx ¼
p

2p
½2ðy1 � y2Þ � sin 2y1 þ sin 2y2�syy

¼
p

2p ½2ðy1 � y2Þ þ sin 2y1 � sin 2y2�sxy

¼
p

2p ½cos 2y1 � cos 2y2� ð49Þ

where y1 and y2 are referred in Fig. 20. The displacement fields
can be given as follows:

ux ¼
pð1� n2Þ

pE

1� 2n
1� n ½ðxþ aÞy1 � ðx� aÞy2� þ 2y ln

r1

r2

� �
uy

¼
pð1� n2Þ

pE

1� 2n
1� n

yðy1 � y2Þ þ 2H arctan
1

c

	 
�
þ2ðx� aÞln r2 � 2ðxþ aÞln r1 þ 4a ln aþ 2a lnð1þ c2Þg ð50Þ
where H ¼ ca is the distance from the origin to point o0, where
the vertical displacement is assumed to be zero and c is a coefficient.

Owing to the symmetry about the y-axis, the problem is
modeled with a 5a�5a square with a ¼ 0.2 m, c ¼ 100, and
p ¼ 1 KPa. Other parameters are taken as E ¼ 3.0�107 Pa and
v ¼ 0.3. The left and bottom edges are constrained using exact
displacement, while the right side is subjected to tractions
computed from the analytical solutions. The problem domain
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Table 3
First 12 natural frequencies of the door of a car using different CS-RPIM models.

Mode CPS3 SC1-L (CS-RPIM) SC1 SC3-L SC3 SC4-L SC4 Reference, CPS6M

1 0.31098 0.29890 0.29934 0.30346 0.30352 0.30498 0.30439 0.30205

2 0.48835 0.45303 0.45299 0.46649 0.46611 0.47208 0.46956 0.46203

3 1.0783 1.0227 1.0191 1.0430 1.0374 1.0522 1.0423 1.0401

4 1.2305 1.2044 1.2044 1.2177 1.2169 1.2217 1.2195 1.2104

5 1.3086 1.2724 1.2706 1.2857 1.2822 1.2911 1.2848 1.2814

6 1.5218 1.4751 1.4733 1.4929 1.4891 1.5003 1.4929 1.4866

7 1.7834 1.6804 1.6785 1.7341 1.7320 1.7537 1.7455 1.7103

8 1.9016 1.8427 1.8408 1.8656 1.8595 1.8747 1.8633 1.8597

9 2.4808 2.3294 2.3203 2.3912 2.3738 2.4177 2.3869 2.3729

10 2.8627 2.7916 2.7880 2.8278 2.8210 2.8412 2.8290 2.8152

11 3.1007 3.0471 3.0456 3.0704 3.0648 3.0785 3.0687 3.0632

12 3.3576 3.2851 3.2784 3.3349 3.3251 3.3466 3.3337 3.3244

Fig. 26. First 12 modes of the door of a car by CS-RPIM with SC3-L.
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has been discretized with six models of node distributions (121,
256, 441, 676, 961 and 1681 nodes, respectively) and the
convergence rates for the displacement and energy norms are
calculated using different methods.

As shown in Fig. 21, all schemes of present method obtain much
better accuracy and higher convergence rate for displacement calcu-
lation than that of FEM. SC3-L gives the best results and highest
convergence rate (2.2596). For this numerical example, ones can find
again results of SCn-L are much better than those of SCn, especially for
three smoothing cells and four smoothing cells. For convergence in
energy error norm shown in Fig. 22, the present methods produce
better accuracy and higher convergence rate for energy calculation
than the FEM. SC1-L (CS-RPIM) converges lowlier than FEM for coarse
mesh, but it converges faster than latter for the fine mesh. The strain
energy calculated based on numerical results has been plotted against
the number of DOFs in Fig. 23. It can be seen that all schemes possess
the better solution than FEM. SC1-L (CS-RPIM) gives the best solution
of the strain energy, which is very close to the exact solution even
when the meshes are very coarse. Again, we find that results of SCn-L
are much better than those of SCn for this problem.
7.4. Free vibration analysis of a cantilever beam

In this example, a cantilever beam is studied with length
L ¼ 100 mm, height H ¼ 10 mm, thickness t ¼ 1.0 mm, Young’s
modulus E ¼ 2.1�104 kgf/mm4, Poisson’s ratio n ¼ 0.3, mass
density r ¼ 8.0�10�10 kgfs2/mm4. A plane stress problem is
considered. Using the Euler–Bernoulli beam theory we can get
its fundamental frequency f1 ¼ 0.08276�104 Hz as a reference.
This problem has also been investigated in [25] and the results are
used for comparison.

Table 2 lists the first six natural frequencies of the beam, and
the first 12 modes using CS-RPIM with SC3-L are demonstrated in
Fig. 24. The modes of other present schemes are not shown in the
paper as they are very similar to the SC3-L. It is observed that
(1) the present method does not have any spurious energy modes;
(2) the frequencies agree well with the results obtained in [25];
(3) the frequencies become large with the increase of the
smoothing cell, which means the model became stiff with
smoothing cell increasing.
7.5. Free vibration analysis of the door of a car

A simple model of the door of a car and the mesh are shown
in Fig. 25. The material parameters are given as: Young’s
modulus E ¼ 210 Mpa, Poisson’s ratio n ¼ 0.3, mass density
r ¼ 7.8�10�6 kg/mm3. The thickness of door is t ¼ 1.0 mm. A
plane stress problem is considered. The geometry and the mesh
are shown in Fig. 25. Numerical results using CPS6M element
(6-node triangular element, 3969 nodes) and CPS3 element
(3-node triangular element, 1044 nodes) in ABAQUS with the
same mesh are computed and used for comparison.

Table 3 lists the first 12 natural frequencies, and the first
12 modes using CS-RPIM with SC3-L are shown in Fig. 26. It is
again observed that the frequencies become large with the
increase of the smoothing cell for present CS-RPIM. The natural
frequencies of SC1 and SC1-L (CS-RPIM) are a little smaller than
those of CPS6M, which means the model of CS-RPIM with one
smoothing cell is a little softer than CPS6M. When three
smoothing cells or four smoothing cells are used, we can find
that the results are very closed to the reference solution obtained
by CPS6M. The natural frequencies obtained by CPS3 are larger
than others as the known overly-stiff phenomenon the linear
triangular element.
8. Conclusion

In this work, a cell-based smoothing radial point interpolation
method (CS-RPIM) is proposed by incorporating the SFEM idea
into the standard CS-RPIM method. The background cells
are further divided into several smoothing cells and piecewisely
constant smoothed strain fields are constructed using the
generalized gradient smoothing technique. Only line integrations
along the smoothing cells are needed and no derivative of the
shape functions is involved in constructing the strain field and to
form the stiffness matrix. The support nodes selection for
the RPIM approximation uses the T2L-scheme that is based on
the background cells and can search the support nodes efficiently.
The numerical examples have confirmed the significant features
of the present method:

the conforming CS-RPIM models (four sets of RPIM shape
functions per cell with SCn-L scheme) can pass the patch test;
the non-conforming CS-RPIM models (four sets of RPIM shape
functions per cell with SCn scheme) cannot pass the patch test;
the essential boundary conditions can be directly imposed as
those in finite element method;
the CS-RPIM needs not evaluate derivatives of meshfree shape
functions, and hence is a weakened weak W2 formulation;
the CS-RPIM model becomes stiffer when the number of
smoothing cell increases;
the SC3-L scheme always gives more accurate results than
other schemes, and hence is recommended;
all the CS-RPIM models work well with triangular cells, and are
very stable and accurate for extremely distributed nodes.
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