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This paper formulates an edge-based smoothed point interpolation method (ES-PIM) for analyzing 2D
and 3D transient heat transfer problems with mixed boundary conditions and complicated geometries.
In the ES-PIM, shape functions are constructed using the polynomial PIM with the Delta function prop-
erty for easy treatment of essential boundary conditions. A generalized smoothing technique is used to
reconstruct the temperature gradient field within the edge-based smoothing domains. The generalized
smoothed Galerkin weak form is then used to establish the discretized system equations. Our results
show that the ES-PIM can provide more close-to-exact stiffness compared with the ‘‘overly-stiff” finite
element method (FEM) and the ‘‘overly-soft” node-based smoothed point interpolation method (NS-
PIM). Owing to this important property, the present ES-PIM provides more accurate solutions than stan-
dard FEM using the same mesh. As an example, a practical cooling system of the rapid direct plasma
deposition dieless manufacturing is studied in detail using the present ES-PIM, and a set of ‘‘optional”
processing parameters of fluid velocity and temperature are found.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The finite element method (FEM) is currently the most popular
numerical approach to obtain approximate solutions for practical
heat transfer systems [1–3]. However, the well-known ‘‘overly-
stiff” property of fully-compatible FEM based on the element mesh
results in solutions with lower temperature, and may result loss in
significant accuracy for temperature gradient [4,5]. To solve this
problem, meshfree methods [6–9] have been developed with
remarkable progress in analyzing engineering heat transfer prob-
lems, such as the element-free Galerkin method (EFG) [10,11],
the meshless local Petrov-Galerkin method (MLPG) [12], the
smoothed particle method (SPH) [13], the point interpolation
method (PIM) [14–16], etc.

A node-based smoothed PIM (NS-PIM or LC-PIM originally) has
been proposed for mechanics problems [7] and then used to ana-
lyze steady heat transfer and thermoelastic problems [14–16].
The NS-PIM employs the PIM shape functions constructed using
a small set of nodes in a local support domain [17], and the gener-
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alized gradient smoothing operation [18] that was proposed based
on the node-based smoothing technique [19]. Compared with the
‘‘over-stiff” FEM model using three-node triangular cells, the NS-
PIM is found very stable (spatially), and can produce much better
gradient solution. It works well with triangular [7] and tetrahedral
[14,15,20] types of mesh. It is also free from volumetric locking,
and capable of producing the important upper bound solutions
for ‘‘force-driving” problems when not-too-coarse mesh is used.
All these important properties are mainly due to the softening ef-
fect induced to the stiffness of the structure, as discovered in
[21]. A theoretical study and an intensively numerical investigation
on the upper bound of NS-PIM can be found in Ref. [21].

Based on the idea of NS-PIM, a node-based smoothed FEM (NS-
FEM) [22] has also been formulated in the framework of FEM set-
tings. The NS-FEM can be viewed as a special case of the NS-PIM,
and the n-sided polygonal cell meshes can be used. NS-FEM always
uses compatible displacement fields created based on cells, and has
quite similar properties as NS-PIM that allows incompatible dis-
placement fields [8]. By combining the FEM procedure and the gra-
dient smoothing operation, a smoothed FEM (or SFEM) [23] has
also been formulated recently and then applied for problems of
plate and shells [24]. It works very effectively for solid mechanics
and n-sided polygonal cells and very heavily distorted mesh can be
used [25]. Detailed theoretical aspects including stability and
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Nomenclature

div divergence operator
grad gradient operator
h convection heat coefficient, W/(m2 �C)
k heat conductivity, W/(m �C)
Qm internal heat source, W/m3

qC prescribed heat flux on 2nd boundary
Ta temperature of ambient medium, �C
TC known temperature on 1st boundary, �C
x Cartesian coordinate
w weighted test function

Greek symbols
U vector of the PIM shape functions
u PIM shape function

C domain boundary
X problem domain studied
D time spacing variation

Subscripts
e equivalent heat transfer coefficient, W/(m2 �C)
T equivalent energy in Eq. (29)
k smoothing area and volume

Superscripts
T transpose operator
h convection matrix
b specified bulk temperature, �C
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convergence about SFEM can be found in [26]. The study of SFEM
has also clearly shown that the smoothing operation on strains
controls the assumed strain field in a proper fashion to ensure
the stability and convergence, and ultimately gives it excellent fea-
tures. However, it is found that both the NS-PIM and NS-FEM can-
not solve time-dependent problems [14–16,20–22] due to their
‘‘overly-softness” of system induced by the excessive node-based
smoothing operations. It is this type of overly-smoothing that leads
to temporal instability (observed as spurious energy eigenmodes)
for solving dynamic problems.

To overcome the temporal instability problems mentioned
above, methods using edge-based smoothing domains have been
developed in both FEM and meshfree settings, i.e., edge-based
smoothed FEM (ES-FEM) [27–29], face-based smoothed FEM (FS-
FEM) [30] and edge-based smoothed PIM (ES-PIM) [9], and cell-
based smoothed PIM (CS-PIM) [31,32]. The stability and conver-
gence of these methods are ensured by the G space theory [33].
The solutions of ES-FEM and FS-FEM are much more accurate in
both the primary variable and its gradient than those of FEM mod-
els, and even more accurate solutions can be obtained compared
with those of the FEM using quadrilateral cells with the same set
of nodes for the 2D solid mechanics problems [27]. They are both
partially and temporally stable, have no spurious modes, and hence
would work well for transient dynamic problems.

In manufacturing processes of rapid heating and solidification, it
is practically important to study the thermal behaviors of the prod-
ucts to ensure the quality and performance. Engineers are particu-
larly interested in the temperature distribution and especially the
maximum temperature gradients and stress components at the crit-
ical zone and time [31]. Numerical means such as the FEM is mostly
preferred for this kind of studies so far, because an experimental
study is usually very expensive, time-consuming and difficult to
conduct properly. Furthermore, due to the ‘‘overly-stiff” property
of FEM model, significant errors occur in the temperature field espe-
cially in high gradient regions. A full-compatible FEM model also of-
fers a lower bound solution in temperature. In contrasts, the ‘‘soft”
nature of a NS-PIM model offers a useful complementary property
of upper bound solution and much better gradient solutions [21].
Thus a simple combination of the upper bound NS-PIM and the low-
er bound FEM can bound the numerical solutions from both sides for
realistic complicated thermal problems as long as a reasonably fine
background mesh can be created [8].

In solving multi-dimensional problems with complicated geom-
etries, meshing has always been a very important issue [6]. It is the
opinion of the authors’ group that the ultimate solution to these
thermal systems is to use triangular and tetrahedral types of
meshes. Many meshfree methods and cell-based methods
enhanced by meshfree techniques [22,27] have been thus formu-
lated based on this consideration.

In this work, two numerical approaches for ES-PIM in two-
dimensions and a face-based smoothed PIM (FS-PIM) in three-
dimensions are formulated to analyze transient heat transfer prob-
lems with complicated geometry and boundary conditions. In the
formulation, we use the elements of triangle and tetrahedron that
can be generated automatically for 2D and 3D analyses. For the
convenience in presentation, both ES-PIM and FS-PIM are generally
referred as ES-PIM. PIM shape functions [6] are constructed using
polynomial basis and a set of small supporting nodes. Discretized
system equations for transient heat transfers are formulated using
the generalized smoothed Galerkin weak form [18]. The accuracy
in temperature and the convergence in equivalent energy are stud-
ied and compared with those obtained using the ‘‘overly-stiff” FEM
and the ‘‘overly-soft” NS-PIM [21]. Finally, a real cooling system of
the rapid direct manufacturing is evaluated to find out the optimal
temperature and velocity of the cooling water needed in the man-
ufacturing process ensuring product quality.
2. PIM shape functions

The PIM shape functions can be created using both polynomial
[17] and radial function bases [33,34]. The polynomial PIM is a ser-
ies approximate scheme to create meshfree shape functions, using
a small set of nodes within a local support [7]. In the scheme, the
problem domain is first discretized with the triangles and tetrahe-
drons that can be automatically generated using any standard rou-
tine available for 2D and 3D solid structures. Then a set of
smoothing domains Xx associated with each edge (face) of the
background cells are constructed based on the constant strain
mesh.

Consider a function T(x, t) defined in the problem domain Xx

bounded by Ux,

Thðx; tÞ ¼
Xn

i¼1

piðxÞai ¼ pTðxÞaðx; tÞ ð1Þ

where p(x) is the monomial basis function, n is the number of nodes
inside the local support domain, a is the time-dependent coeffi-
cients yet to be determined.

To construct PIM shape functions using polynomial basis, it is
well known that moment matrix may be singular [6]. A T-scheme
has been proposed to select the supporting nodes for interpolation
of points of interest in cells [9]. As illustrated in Fig. 1, when the
interested x is located in an interior cell, we select six nodes: three
nodes of the home cell (j1–j3) and another three at the remote
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Fig. 1. Illustration of constructing smoothing domains for 2D and 3D problems. (a) 2D edge-based smoothing domains created by sequentially connecting the centroids of
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vertices of three neighboring cell (j4–j6). When x is in a boundary
cell, only three vertices are selected as the interpolant nodes (i1–
i3). This nodes selection leads to the quadratic ES-PIM (T6/3
scheme). For linear interpolations, three nodes of the triangular cell
hosting x are selected for all cells, which leads to the linear ES-PIM
(T3 scheme).

This selection scheme is purposely devised for creating different
PIM shape functions, where quadratic interpolations are performed
for the interior cells and linear interpolations for boundary cells. It
not only successfully overcomes the singular problem in the pro-
cess of polynomial PIM shape functions construction, but also im-
prove the efficiency [9]. More importantly, the use of three nodes
for boundary cells insures the pass of the standard patch tests.

For three-dimensional cases with linear interpolation (which is
in fact the same as the FS-FEM [30]), we simple select four nodes of
the home cell hosting x. No matter the interested point of x located
in an interior or a boundary cell, only the four vertexes of the home
cell are selected leading to linear FS-PIM (T4). Note that the linear
PIM shape functions so constructed are exactly the same as those
in standard FEM using linear tetrahedral cells and then used to
interpolate the unknown temperature field. The PIM shape func-
tions can always be constructed and the moment matrix will never
be singular [6], as long as these four nodes are not in the same
plane. Alternative schemes for construct PIM shape functions can
be found in [9].

The basis p(x) in Eq. (1) can usually be built using the Pascal’s
triangles and a complete lower order basis is generally preferred.
For two-dimensional problems, the complete polynomial basis of
orders 1 and 2 can be written as

pTðxÞ ¼ f1 x y g
pTðxÞ ¼ f1 x y x2 xy y2 g ð2Þ

and for three-dimensional problems studied in this paper we only
use the linear basis

pTðxÞ ¼ f1 x y z g ð3Þ

The coefficients in Eq. (1) can be determined by enforcing the tem-
perature function to be satisfied at the n nodes within the local sup-
port domain, and then we obtain the approximated field function as

Thðx; tÞ ¼
Xn

i¼1

uiðxÞTiðtÞ ¼ UTðxÞTðtÞ ð4Þ

where T(t) is the nodal parameters and U(x) are

UTðxÞ ¼ fu1ðxÞ u2ðxÞ � � � unðxÞ g ð5Þ

The derivatives of the PIM shape function can be obtained very eas-
ily due to its polynomial property, but they are not required in the
present ES-PIM and FS-PIM based on the weakened weak (W2) for-
mulation [8]. In addition, shape functions created using the PIM
procedure possess the Delta function property, which permits sim-
ple treatment of essential boundary conditions just as what we do
in the FEM.
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Note that when high order polynomial PIM or RPIM shape func-
tions [35–39] are used, the displacement field is not compatible
and the generalized smoothing technique [18] needs to be used.
The theoretical foundation for such a formulation is the G space
theory [33] leading to the W2 form that guarantees stability and
the convergence to the exact solution [8]. In this work, we adopt
both linear and quadratic interpolations for ES-PIM and only linear
interpolation for FS-PIM, respectively, based on the background tri-
angular and tetrahedral mesh for 2D and 3D problems.

3. Detailed formulation of the ES-PIM

3.1. Strong form equations

For transient heat transfer problems in a single material with
domain X bounded by C, our problem is to find T(x, t) that satisfies
the following equations [1,40]:

divðkgradTÞ þ Qv ¼ qc
@T
@t

for x in X; t > 0 ð6Þ

T ¼ TC for x on C1; t > 0 ð7Þ

� ðkgradTÞ � n ¼ �k
@T
@n
¼ qC for x on C2; t > 0 ð8Þ

� ðkgradTÞ � n ¼ �k
@T
@n
¼ hðT � TbÞ for x on C3; t > 0 ð9Þ

� ðkgradTÞ � n ¼ �k
@T
@n
¼ 0 for x on C4; t > 0 ð10Þ

T ¼ T ini for x in X; t ¼ 0 ð11Þ

where q is the density, c is the specific heat, n is the unit normal
vector, and Tini is the initial temperature.

3.2. Standard Galerkin weak form

To find an approximate solution over time and space domain
using the standard Galerkin procedure, the space of test functions
is define as

V ¼ fwðxÞjw ¼ 0 on C1; w 2 C0ðXÞg ð12Þ

By multiplying Eq. (6) with a test function w 2 V and using the
Divergence Theorem, we obtain the variational formulationZ

X
kgradT � gradwþ qc

@T
@t

w
� �

dX

¼
Z

X
QvwdX�

Z
C2

wqC dC�
Z

C3

whðT � TbÞdC ð13Þ

Substituting Eq. (4) into Eq. (13), and set ui as the test function w,
we have the following discrete set of N total unknowns of temper-
ature equations:

½Kþ Kc�fTg þ ½M�f _Tg ¼ fFg ð14Þ

in which

KIJ ¼
Z

X

UI;x

UI;y

UI;z

2
64

3
75

T kx 0 0
0 ky 0
0 0 kz

2
64

3
75

UJ;x

UJ;y

UJ;z

2
64

3
75dX ð15Þ

Kc
IJ ¼

Z
C3

hUT
I UJ dC ð16Þ

MIJ ¼
Z

X
qcUT

I UJ dX ð17Þ

FI ¼
Z

X
UT

I Qm dX�
Z

C2

UT
I qC dCþ

Z
C3

hTbU
T
I dC ð18Þ

where the superscript c denotes the convection heat transfer ma-
trix, K represents the conductance (or usual ‘‘stiffness”) matrix, M
is the capacitance matrix, and the superposed dot of nodal temper-
ature vector T indicates the time differentiation. Note that here M is
adopted as the ‘‘lumped” mass matrix, which shows superiority
over the consistent mass matrix especially in dynamics and nonlin-
ear problems [3]. The above-mentioned standard Galerkin weak
form leads to a FEM model.

3.3. Generalized smoothed Galerkin weak form

In the generalized smoothed Galerkin (or GS-Galerkin) weak
formulation, the compatible temperature gradient shown in Eq.
(13) will be replaced by a reconstructed gradient field using the
generalized smoothed gradient over smoothing domains [8,18].
Naturally the integration of conductance matrix is based on the
smoothing domains Xk (k = 1, 2, . . . , N), where N is the total num-
ber of edges or faces, respectively, in the 2D or 3D problems do-
mains. Using this set of edge- and face-based smoothing
domains, the domain integration in Eq. (15) becomes simple sum-
mation, and the standard ‘‘stiffness” matrices are transformed into
the smoothed conductance matrices

KIJ ¼
XN

k¼1

KðkÞIJ ð19Þ

in which the summation implies ‘‘assembly”, and

KðkÞIJ ¼
Z

Xk

BT
I kBj dX ð20Þ

The generalized gradient smoothing technique that works also for
discontinuous field functions [18] is now applied over the smooth-
ing domain to obtain the smoothed gradient for the interested node
xk

�giðxkÞ ¼
1

Vk

Z
Ck

Tni dC ð21Þ

where Ck is the boundary of Xk, ni is the ith component of the out-
wards normal on Ck, and T is the assumed temperature field in a
proper G space. It is shown that the gradient of the temperature
field is not used in our formulation and the T can be discontinuous
in Xk, so long it is continuous on Ck.

In Eq. (22), Vk is the area in two-dimensions or volume in three-
dimensions of smoothing domain Xk of edge or face k that can de-
fined by

Vk ¼
Z

Xk

dX ¼ 1
3

XNk
e

j¼1

AðjÞe for 2D problems ð22Þ

Vk ¼
Z

Xk

dX ¼ 1
4

XNk
e

j¼1

V ðjÞe for 3D problems ð23Þ

where Nk
e is the number of cells around the edge or face k (Nk

e ¼ 1 for
the boundary edges or faces and Nk

e ¼ 2 for interior edges or faces),
AðjÞe and V ðjÞe are the area and volume of the jth cell around the edge
and face k, respectively.

Using PIM shape functions to construct the field function for
temperature, the smoothed gradient for node k can be written in
the following matrix form

�gðxkÞ ¼
X
I2Dk

�BXk
I TI ð24Þ

where Dk is the set of nodes used in the interpolation for field func-
tion on Ck.

For three-dimensional spaces, the corresponding forms are gi-
ven by
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BXk
I

h iT
¼ ½�bI1

�bI2
�bI3� ð25Þ

�bIp ¼
1

Vk

Z
Ck

uIðxÞnpðxÞdC ðp ¼ 1;2;3Þ ð26Þ

where uI(x) is the PIM shape function for node I.
Using Gauss integration along each sub-boundary edge or sur-

face Ck of the smoothing domain Xk, Eq. (26) can be rewritten in
the following summation form as

�bIi ¼
1

Vk

XNs

q¼1

XNg

r¼1

wruIðxqrÞniðxqÞ
" #

ð27Þ

where Ns is the number of sub-boundary edge or surface of Ck, Ng is
the number of total Gauss points located in each Ck, wr is the cor-
responding weight of given Gauss points.

Eq. (27) implies that only shape function values at points are
needed and no explicit analytical form of shape functions is re-
quired. This gives tremendous freedom in the shape function con-
struction, and the shape functions need not to be formed explicitly.
Function values at interested points can be obtained by simple
interpolation.

The smoothed Galerkin weak form can be obtained by replacing
the conductance matrix K in Eq. (14) with the following smoothed
‘‘stiffness” matrix

KðkÞIJ ¼ BXk
I

h iT
k BXk

I

h i
Vk ð28Þ

It can be easily seen from Eq. (28) that the resultant linear system is
symmetric and banded (due to the compact supports of PIM shape
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Fig. 3. The equivalent energy for the NS-PIM, present E
functions). In addition, we only modify the ‘‘stiffness” matrix in Eq.
(15) by the smoothed Eq. (20), which can solve the smoothed Galer-
kin weak form efficiently.
4. Results and discussions

For solving the transient response, the discretized equation sys-
tem from the GS-Galerkin weak form is a set of differential equa-
tions that require further discretized using Crank-Nicolson
difference technique in time domain [3]. Both the 2D and 3D codes
have been developed in FORTRAN, and a direct Gaussian elimina-
tion solver [41] is used to analyze the transient heat transfer prob-
lems. For comparison, both the FEM and NS-PIM in-house codes
are also developed to evaluate the same problems using the exactly
same solver and meshes. The critical time step Dt can be deter-
mined in terms of the maximum generalized eigenvalue of
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smoothed system [6,11]. As the analytical solutions of these com-
plex problems are not available, reference solution is then obtained
using the ABAQUS�, in which a very fine mesh with high-order
cells is adopted. The equivalent energy norm for heat transfer mod-
el [5] is defined as

UT ¼
Z

X

�gTk�gdX ð29Þ

where, in our current case, �g is the smoothed temperature gradient
in Eq. (24).

4.1. 2D heat transfer beam

To verify the present ES-PIM formulation, a 2D heat transfer
problem with mixed boundary conditions is first examined as illus-
trated in Fig. 2. In the computation, the parameters are taken as
k1 = 50.0 W/(m �C), k2 = 50.0 W/(m �C), h = 1500 W/(m2 �C), qC =
�4000 W/m2, TC = 0 �C, Qv = 0 W/m3, Tb = 200 �C, q = 3000 kg/m3,
c = 50 J/(kg �C) and Tini = 25 �C. In analysis of the transient state,
the time increment is selected to Dt = 0.1 s. The reference solution
is obtained using ABAQUS� with a very fine mesh of 8241 nodes
for comparison purposes.

It is well-known that the compatible FEM always obtains a low-
er bound of the exact solution in energy norm to elasticity prob-
lems due to its overly-stiff property. The important property of
upper bound in equivalent energy has also been studied using
the NS-PIM for 2D and 3D steady heat transfer [14–16]. To examine
the ES-PIM convergence of equivalent energy of transient system,
four models are created with 33, 105, 369 and 793 nodes. For com-
parison, NS-PIM and FEM using the same meshes are also used to
compute the same problem.

Fig. 3a presents the time history of equivalent energy defined in
Eq. (29). It is found that the linear ES-PIM model is more close to
the reference one, compared with linear FEM model using the
three-node triangular mesh. It can also be observed that the results
of quadratic ES-PIM are in a very good agreement with the refer-
ence ones and are even better results than the linear model. Note
that the transient system will arrive at the steady state in about
t = 160 s.

Fig. 3b further shows the convergence of energy solution when
the system approaches steady at t = 250 s. As expected from
Fig. 3b, FEM and NS-PIM give lower and upper bound to the refer-
ence solution. ES-PIM models perform softer than the FEM but stif-
fer than the NS-PIM, which implies that more accurate solution can
be obtained compared with the FEM. Compared with the linear ES-
PIM, the quadratic ES-PIM performs softer and provides results of a
little better accuracy and higher convergence. This kind of insignif-
icantly improved accuracy is mainly due to the discount effect on
smoothing operation in higher order interpolations [8]. It is again
seen that the present ES-PIM can provide a close-to-exact solution
in equivalent energy form: it is much softer than the ‘‘overly-stiff”
FEM and much stiffer than the ‘‘overly-soft” NS-PIM model. The
important finding implies that the ES-PIM can be used to analyze
time-dependent problems with much more accurate solutions in
primary variable. In addition, better convergence can also be ob-
tained compared with linear FEM.

4.2. A 3D engine pedestal

This section analyzes a real engine pedestal with very complex
geometries, which is manufactured by the plasma deposition-lay-
ered technique [35]. The pedestal part is made of superalloy mate-
rial, and detailed dimensions and processing parameters can be
found in Ref. [42]. Fig. 4 is the illustration of the engine pedestal.

To examine the evolution of nodal temperature of the compo-
nent, three points are sampled as shown in Fig. 4, in which points
C and B are the midpoints of lines DE and CA, respectively. Some
computational parameters are taken as k1 = 30.0 W/(m �C),
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k2 = 40.0 W/(m �C), k3 = 50.0 W/(m �C), h = 1000 W/(m2 �C), qC =
�6000 W/m2, TC = 0 �C, Qv = 0 W/m3, Tb = 500 �C, Dt = 0.0002 s,
c = 100 J/(kg �C) and q = 3000 kg/m3.

In 3D space, the smoothing operation on compatible tempera-
ture gradient is performed based on faces of the tetrahedrons
and then the FS-PIM can be formulated. To confirm the FS-PIM’s
convergence of equivalent energy and the solution bounds, four
sets of meshes are generated with irregularly scattered 587,
1543, 2315 and 2956 nodes, respectively, for the 3D part. Fig. 5
25 40 60 80 100 120 140 160 180 200

Fig. 6. Comparisons of computed temperatur
plots the energy solutions against the increasing of DOFs for FS-
PIM, NS-PIM and FEM using the same meshes, together with the
reference one obtained using a very fine mesh of 12,344 nodes.

As expected, the FEM model behaves overly-stiff and hence
gives a lower bound solution, and NS-PIM behaves overly-soft
and thus provides an upper bound solution, which has also been
presented and proven [14–16,21]. The FS-PIM gives a very close-
to-exact stiffness and hence the results of primary variables in ma-
trix norm will be more accurate than those of the fully-compatible
(a) FS-PIM 

(1117 nodes)

220 240 262 o( C )

( b) Reference solu. 

(12344 nodes)

(c) FEM 

(1117 nodes)

e distributions for the cap part (t = 20 s).
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FEM. Again we find that the FS-PIM presents the comparative con-
vergence in equivalent energy.

The following contours of Fig. 6 examine the accuracy of tem-
perature distributions when the transient system arrives at the
steady state at t = 20 s. It is observed that FS-PIM gives more accu-
rate results than those of FEM using the same four-node tetrahe-
dral mesh and linear shape functions. This finding will be further
evaluated in the following Fig. 7 by checking the results at the
three points.

Fig. 7 checks the numerical accuracy by plotting the time his-
tory of temperature at sample points A, B and C, for both FS-PIM
and FEM using the same tetrahedral mesh. The numerical results
are also compared with the reference solution obtained using a
very fine mesh of 12,344 nodes with high-order cells.

It can be clearly seen that the temperatures obtained using FS-
PIM at points A, B, and C are closer to the reference results than
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Fig. 7. Comparisons of temperature history at
those of linear FEM using the same mesh. It is also found that this
system actually reaches the steady state when t = 8 s.
4.3. 3D manufacturing system

In those rapid manufacturing processes, such as the manufac-
turing using high energy density beam heat source of laser and
plasma [32], metal components or structures experience drastic
changes in temperature especially the critical region. This charac-
teristic usually leads to extreme temperature gradient and hence
produces undesired and unpredictable cracks and distortions in
the components. Experimental study on these kinds of systems is
very difficult, time-consuming and expensive to acquire detailed
thermal and mechanical behaviors. Therefore, the need to numer-
ically exploit and predict thermal responses of such special pro-
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cesses has become more and more increasingly necessary and
important.

In this paper, we utilize the novel meshfree FS-PIM with better
accuracy and convergence of numerical solutions to analyze a real-
istic temperature-controlled system, which is a complicated pro-
cess of rapid, transient, high-temperature, multi-dimensions and
multi-parameters combined with different physical and chemical
responses. Fig. 8 illustrates the modeling of the rapid manufactur-
ing system designed in [35]. The substrate is made of the same
material as turbine and is rigidly fastened onto the Computer
Numerical Control (CNC) machine.

The engine turbine is sequentially fabricated over the substrate
using the PDM technique, in which molten metal powder of about
2000 �C is layer by layer deposited onto the substrate to fabricate
the component with desired geometry and accuracy. Therefore,
the temperature of substrate plays a very important role in cooling
the molten metal powder, reducing residual stresses and prevent-
ing hot and cold cracks of deposited component. As represented in
Fig. 8, to rapidly decrease the temperature of molten metal pow-
der, seven circular tubes with cooling water are laid out by simply
control different temperature and speed of cycled cooling water
[35]. On the other hand, before the rapid manufacturing we usually
require preheating the substrate to prevent the deformation of
deposited metal due to larger difference of material parameter
such as the important thermal expansion coefficient. Thus engi-
neers need to preheat the substrate and then cool it before and
during the rapid manufacturing, respectively. However, the opti-
mal preheating temperature varies with the chemical composition
and especially equivalent carbon as well as the dimensions of sub-
strate [43]. Our analysis objective is to control the preheating and
cooling effect of the manufacturing process by adjusting the proper
temperature Tb of the cooling water and the heat convective and
conduction coefficient h between water and the tube surface,
which is closely related with the mean velocity of fluid [44].

For simplification in presentation, only a half of this component
is simulated by dividing the model by the plane DEHG as shown in
Fig. 8. To more clearly demonstrate the numerical accuracy, six
arbitrary points (A, B, C, D, E, F, G and H, in which G is the midpoint
of edge HD) are sampled.

To avoid the thermal deformation of CNC rotary table resulted
from the heat transfer of substrate, the bottom surface of substrate
0.24m

7× Φ
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0.04mo30
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      Substrate ri idl  fastened on CNC

    machine with 7 "coolin " water tubes

1 Temperature boundar ( )

(Bottom surface of substrate

Γ

2    Heat flux boundar ( )

(Four side faces of substrate)

Γ

A

B C

D

EF

G

H

Fig. 8. Simplified model of the manufacturing
needs to be prescribed with the room temperature (TC = 25 �C).
Other important material and computational parameters are taken
as k1 = 40.0 W/(m �C), k2 = 40.0 W/(m �C), k3 = 40.0 W/(m �C),
h = 1500 W/(m2 �C), qC = �20 W/m2, Qv = 0 W/m3, TC = 25 �C,
Tb = 100 �C, Tini = 25 �C for the substrate, the time step Dt is
0.02 s, the thermal capacity is 50 J/(kg �C) and the material density
is 6000 kg/m3, unless specially denoted. Moreover, only one layer
of turbine is deposited with the initial temperature of averaged
Tini = 2000 �C.

Fig. 9 shows the different temperature distributions when the
system reaches the steady state at t = 150 s. Numerical results of
FS-PIM and FEM are obtained using the same four-node tetrahedral
mesh and the reference solution is obtained using a very fine mesh of
12,859 nodes. It can be clearly observed that the temperatures com-
puted at most of all sample points using the present FS-PIM are more
accurate than those using the linear FEM obtained using the same
mesh. Note that the temperature solution of FS-PIM in the central re-
gion is a little larger than that computed reference solution, which
will be more clearly demonstrated in the following section.

Fig. 10 plots the temperature evolutions of points A, C, E and F,
in which A and E stand for the typical points of substrate and the
rest in the turbine. It is again seen that the temperatures computed
from FS-PIM are more accurate for most of all sample points than
linear FEM using the same mesh. Note here that the temperature of
point E obtained using FS-PIM is a little higher than the reference
solution, which is consistent with results from Fig. 9, in the central
zone of the turbine part. However, the temperature of stead state
using FS-PIM is still closer to the reference one compared with that
of FEM.

It is thus concluded that the FS-PIM’s results of temperature are
more accurate than those of FEM using the same linear mesh for
both steady and transient states.

4.4. Evaluation on temperature-controlled system

To begin the next deposition, the temperature of deposited tur-
bine should be decreased to the desired instant. We designed a
cooling system with cooling water through the circular tube, which
has been proven to be very effective for the rapid manufacturing
process [35]. However, it is still not clear to determine the critical
temperature of cooling water and mean fluid velocity for the pur-
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Fig. 9. Comparisons of computed steady temperature distributions (t = 150 s).
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pose of evaluating the cooling effectiveness. This section focuses on
studying the cooling and preheating effects, respectively, on depos-
ited turbine and the substrate by tuning the water temperature Tb

and convective heat transfer coefficient h that can be empirically
computed [44] by the following equations:

Re ¼ mmD=m ð30Þ
Nu ¼ 0:023Re0:8Pr0:34 ð31Þ
he ¼ Nukb=D ð32Þ

in which D is the diameter of circular tube, vm is mean flow velocity,
m is the kinematic viscosity of fluid, Re is the Reynolds number, Nu is
the average Nusselt number, Pr is the Prandtl number, kb is thermal
conductivity of fluid.

To quantitatively evaluate the cooling system, we list two cases.
One is to change the fluid velocity and the other is to control the
bulk temperature.

Fig. 11 gives the temperature evolution of sample points B, D, E
and G, under different velocity of fluid in Case 1 using the FS-PIM
with 1547 nodes. Note here that this system approaches the steady
state at about 70 s.

It can be clearly found that: (a) the cooling water plays a very
important role for rapidly cooling the deposited system in 10 s,
as represented in Fig. 11a and c for the turbine and especially in
Fig. 11b and d for the substrate; (b) the cooling water can take
away the excessive heat energy originated from molten deposition
in the scanning period; (c) the mean velocity of cooling water has
much influence on cooling the substrate and hence on deposited
turbine.

In practical manufacturing process, it is the ‘‘cooled” substrate
that directly determines the cooling effects. Note that higher water
velocity is difficult to control and usually gives rise to the excessive
complexity in experiment setups and hence the increasing in cost.
More importantly, the rapid solidification of deposited turbine also
degrades the joint of deposition with the substrate. In the manu-
facturing, the deposited turbine needs to be cooled at desired tem-
perature, generally about 600–800 �C during a period of 10 s [35].
Based on above considerations and results demonstrated in
Fig. 11, the fluid velocity of 0.5 m/s is a preferable option.
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Fig. 10. Temperature variation with time of sample points (A, C, E and F).
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On the other hand, the substrate requires to be preheated for
the perfect joint of substrate with molten metal powder. By provid-
ing the heated water, the cooling water can also be responsible for
the preheating of substrate, which may replace the preheating
scheme using a stove below the substrate presented in Ref. [35].
This is mainly because that the preheating using a stove is uncon-
trollable in practical manufacturing and leads to the deformation
of CNC machine.

The following Fig. 12 analyzes the preheating effect of water
temperature on substrate under the constant mean velocity of
cooling water.

It can be found from Fig. 12 that: (a) the water temperature
determines the temperature of steady state of system; (b) for pre-
heating the substrate, the water temperature of Tb = 40 �C is suit-
able and also capable of preventing the deformation of connected
plastic tubes of cooling water; (c) Tb = 40 �C is also acceptable for
cooling the deposited turbine to 600–800 �C in 10 s; (d) the tem-
perature of central region is lower than other section of the
substrate.

In conclusion, there exists an optimal combination for bulk
temperature and fluid velocity, which is selected as Tb = 40 �C
and vm = 0.5 m/s (the equivalent film convection coefficient of
he = 2637 W/(m2 �C)) from above analysis.
5. Conclusions

In this work, both ES-PIM and FS-PIM are formulated to, respec-
tively, analyze 2D and 3D transient heat transfer problems with
complex geometry. The accuracy and convergence in temperature
and equivalent energy are examined in details through numerical
examples. An important realistic cooling process of manufacturing
system has been evaluated to obtain optimal cooling parameters in
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Fig. 12. Temperature evolutions for points B, D, E and G with w
both bulk temperature Tb and fluid velocity vm. From this study, the
following conclusions can be made:

1. The ES-PIM works very well with triangular and tetrahedral
meshes that can be easily generated thanks to the softening
effects provided by the generalized gradient smoothing tech-
nique. This approach is easy to implement as the standard
FEM without introducing additional DOFs and parameters.

2. The ES-PIM can obtain a close-to-exact ‘‘stiffness” (conduc-
tance) that is much softer than the ‘‘overly-stiff” of FEM and
much stiffer than the ‘‘overly-soft” NS-PIM, and hence applica-
ble to transient heat transfer problems.

3. The ES-PIM models perform more softly than of the linear FEM
and more stiffly than the NS-PIM, leading to more accurate tem-
perature solutions than FEM using the same linear meshes.

4. Comparing to the linear FEM using the same mesh, the linear
ES-PIM can achieve higher accuracy and better convergence in
temperature and equivalent energy for both 2D and 3D prob-
lems with complicated geometry.

5. Using the FS-PIM, an important cooling system of the rapid
direct manufacturing process has been analyzed, and an
optional combination of the processing parameters has been
found: vm = 0.5 m/s and Tb = 40 �C.

Meshfree methods, in general, require more CPU time compared
with well-developed FEM for models of same DOFs [6,33]. The total
DOFs of ES-PIM and that of the standard FEM are exactly the same
when the same linear mesh is adopted, and hence the computa-
tional cost for the ES-PIM model and the FEM model are of the
same order. Since the sparseness of ES-PIM models is 4/3 times
of the FEM counterpart, ES-PIM takes about 1.7 times CPU time
[15] in solving the system equations even when a bandwidth
solved is used [41]. If an interactive solver is used, ES-PIM takes
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only about 1.3 times CPU time of the linear FEM. Note that the
solution accuracy of linear ES-PIM using constant strain mesh is
much better (about 10 times) than corresponding FEM using the
same mesh. Therefore, in terms of computational efficiency (com-
putation time for the same accuracy), the linear ES-PIM has been
found superior to FEM by as much as 5–10 times and offers a very
promising platform for practical problems.
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