Radiative Heat Transfer

2A- Concepts & Definitions

Dr. Peter J. Disimile
Department of Aerospace Engineering
Peter.disimile@uc.edu

Basis Concepts

• There are two views by which the theory of radiant energy transfer can be examined:
 1) Classical Electromagnetic Wave Theory

2) Quantum Mechanics (photons).

Quantum theory

\[E_{\text{photon}} = h \cdot v \quad h = 6.63 \cdot 10^{-34} \quad \text{J} \cdot \text{s} \]
Radiative Heat Transfer

Basis Concepts

- In most cases, the resulting equations describing the interaction of radiation and matter using either classical electromagnetic (EM) theory or quantum mechanics are similar.
- Exceptions where quantum effects are important, occur when one considers the spectral distribution of energy emitted from a body and the radiative properties of gases.
- The true nature of EM radiation (electromagnetic energy, i.e., waves or photons) is not yet known.

Radiative Heat Transfer

Basis Concepts

- Electromagnetic (EM) waves come from transitions between energy states.
- Ultraviolet, visible, and infrared light typically originates from electronic transitions in atoms.
- EM waves can be emitted from solids, liquids, and gases.
- All matter with T > 0 K emit radiation at all times.
Radiative Heat Transfer

Basis Concepts

- Electromagnetic radiation includes cosmic rays, gamma rays, X rays, ultraviolet, visible and infrared radiation, microwaves, and broadcasting waves.

Electro-Magnetic Spectrum

- Within the framework of wave theory, all electromagnetic radiation follows the laws governing transverse waves which oscillate in a direction perpendicular to the direction of propagation (travel).
Radiative Heat Transfer

Basis Concepts

- All electromagnetic waves are characterized by their wavelength (λ) and frequency (ν).

- The wavelength (λ) and frequency (ν) is related to the propagation velocity (or speed) and is equal to c, which is the speed of light in that medium,

$$\lambda = \frac{c}{\nu}$$

- The speed of light in a vacuum, $c_0 = 2.9979 \times 10^8$ m/sec.

- One can also relate the speed of light in a medium (solid, liquid or gas) to the index of refraction (n) and c_0 by,

$$n = \frac{c_0}{c}$$

Radiative Heat Transfer

Basis Concepts

- The index of refraction, n, for most gases (including air) is approximately 1, while for liquids (e.g. water) and solids (e.g. glass), n is approximately 1.5.

- Rewriting the frequency of electromagnetic (EM) radiation as follows:

$$\nu = \frac{c}{\lambda}$$

$$\nu \equiv \frac{\omega}{2\pi} = \frac{c}{\lambda}$$

$$\nu \equiv \frac{\omega}{2\pi} = \frac{c}{\lambda} = ck$$

Where ω is the angular frequency and the wavenumber (k) is the number of waves in one unit length. $k = 1/\lambda$.
Radiative Heat Transfer

Basis Concepts

• Although the propagation velocity (c) and the λ of a radiant beam (EM wave) depend on the medium, the frequency (ν) depends only on the radiant source.

• So to rephrase this, the frequency of an EM wave depends only on the source and is independent of the medium.

$$\nu = \frac{c}{\lambda}$$

• The frequency of an electromagnetic wave can range from a few cycles per second to millions of cycles per second.

• Common wavelength units are:
 1) microns (μm = 10^{-6} m),
 2) nanometers (nm = 10^{-9} m),
 3) angstroms (\AA = 10^{-10} m).

Radiative Heat Transfer

Basic Physics' of Radiation

• *Einstein* postulated that electromagnetic radiation is the propagation of a collection of discrete packets of energy called *quanta or photons* that travel at the speed of light c.

• In the latter case, energy is being transported by photons moving at the speed of light, which differs from molecular transport in which all molecules move at different speeds.

• In this view, each photon of frequency ν is considered to have an energy of,

$$e = h\nu = \frac{hc}{\lambda}$$

where Planck’s constant (h) = 6.625×10^{-34} J sec

• Photon energy (e) is related to photon momentum (p) by:

$$e = pc$$
radiative heat transfer

basic physics' of radiation

- Further, each photon has linear momentum (mom):

\[\text{Mom} = \frac{h \nu}{c} \]
\[\text{Mom} = \frac{h}{\lambda} \]
\[\text{Mom} = hk \]

- In Einstein’s theory, \(h \) and \(c \) are constants, thus the energy of a photon is inversely proportional to its wavelength.

\[e = h \nu = \frac{hc}{\lambda} \]

- Therefore, shorter wavelength radiation possesses greater photon energies and therefore, gamma rays and X-rays are highly destructive.

radiative heat transfer

basic physics' of radiation

thermal radiation

production mechanisms

- Electronic Transitions
- Vibration-Rotation Transitions
- Rotational Transitions
- Lattice Vibrations
- Bound Electron Transitions
- Molecular Vibrations

<table>
<thead>
<tr>
<th>Thermal Radiation Production Mechanisms</th>
<th>S</th>
<th>L</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic Transitions</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vibration-Rotation Transitions</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Rotational Transitions</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Lattice Vibrations</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Bound Electron Transitions</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Molecular Vibrations</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

figure 1: spectrum of electromagnetic radiation (wavelength and wavelength) in various types of radiation, production mechanisms.
Radiative Heat Transfer

Basic Physics’ of Radiation

Radiative Heat Transfer

Basic Physics’ of Radiation

Thermal radiation is defined as radiant energy emitted by a body or medium that is solely due to its temperature.

Solar radiation reaching the earth resides between $\lambda = 0.1 \, \text{um to} \, 100 \, \text{um}$.
Radiative Heat Transfer

Basic Physics’ of Radiation

- Ultraviolet Radiation (UV) - the UV region, forms the lower λ boundary of the thermal radiation spectrum.

 - Radiation within this region is mainly produced by changes in the atomic energy levels which occurs when outer electrons of an atom are displaced. (λ → 0.1 μm to 0.4 μm)

Radiative Heat Transfer

Basic Physics’ of Radiation

- Visible Radiation (VISIBLE) - emanates from the sun along with other EM radiation and is primarily due to electronic transitions in gases.
 - It can be artificially produced in lasers, Light Emitting Diode (LED’s), incandescent lamps, & fluorescent tubes.
 - The summation of all visible wavelengths is referred to as white light. (λ → 0.4 μm to 0.76 μm)
Radiative Heat Transfer

Basic Physics of Radiation

- **Infrared Radiation (IR)** - thermal radiation in the IR range is primarily associated with molecular or lattice vibrations.
 - All bodies at a temperature above absolute zero emit IR radiation.
 - In general, hot solid bodies emit more IR energy than visible and UV radiation. (λ → 0.76 to 1000 μm).

![Diagram of the electromagnetic spectrum showing the location of infrared radiation between 0.76 and 1000 μm.](image)