Ch. 8 Interpolation

You will frequently have occasions to estimate values between precise data points. The most common method used for this purpose is polynomial interpolation.

\[f(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n \]

(1)

For \(n+1 \) data points there is one and only one polynomial of order \(n \) or less that passes through all points. For example there is only one straight line (that is, a first-order polynomial) that connects two points.

First order (linear)
Second order (parabolic)
Third order (cubic)

Polynomial interpolation consists of determining the unique \(n \)-th order polynomial that fits \(n+1 \) data points.

There are a variety of mathematical forms in which the polynomial can be expressed. We are interested in only one representation but we will describe two alternatives that are well-suited for computer implementation. There are the Newton and Lagrange polynomials, and we will study the Lagrange polynomials.

Newton’s Divided-Difference Interpolating Polynomials

This is among the most popular and useful forms.
Linear Interpolations

The simplest form of interpolation is to connect two data points with a straight line. This technique called linear interpolation is depicted graphically. Using similar triangles

\[
\frac{f_i(x) - f(x_0)}{x - x_0} = \frac{f(x_i) - f(x_0)}{x_i - x_0}
\]

which can be rearranged to yield

\[
f_i(x) = f(x_0) + \frac{f(x_i) - f(x_0)}{x_i - x_0}(x - x_0)
\]

which is a linear interpolation formula.

The notation \(f_i(x)\) designates that this is a first-order interpolation polynomial. The term \([f(x_i) - f(x_0)]/[x_i - x_0]\) is a finite divided-difference approximation of the first derivative. In general, the smaller the interval between the data points, the better the approximation.

Quadratic Interpolation

Suppose three data points are available. A particularly convenient form for this purpose is

\[
f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)
\]

This form although looks different from that given in Eq 1, These are equivalent. It can be show as follows from Eq 4

\[
f_2(x) = b_0 + b_1x - b_1x_0 + b_2x - 2b_2x_0 + b_2xx_0 - b_2xx_1
\]

or collecting terms

\[
f_2(x) = a_0 + a_1x + a_2x^2
\]

where
\[a_0 = b_0 - b_1 x_0 + b_2 x_0 x_1, \quad a_1 = b_1 - b_2 x_0 - b_2 x_1, \quad a_2 = b_2 \]

Eqs 1 and 4 are alternative equivalent formulations of the unique second-order polynomial joining the three points.

A simple procedure can be used to determine the values of the coefficients. For \(b_0 \) Eq 4 with \(x = x_0 \) can be used to compute

\[b_0 = f(x_0), \quad b_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \]

(5,6)

by substituting Eqs (5,6) into Eq 4, which can be evaluated at \(x = x_2 \) and solved (after some algebraic manipulations for

\[b_2 = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \frac{f(x_1) - f(x_0)}{x_1 - x_0} \]

(7)

The last term in Eq 4 introduces the second-order curvature into the formula

Lagrange Interpolating Polynomials

Given a set of data \((x_i, y_i), i = 1, 2, \ldots, n \), find a smooth curve that passes through the data.

From the problem statement, we must have

\[f(x_i) = y_i, \quad i = 1, 2, \ldots, n \]

(8)

- The function should be easy to evaluate.
- It should be easy to integrate and differentiate.
- It should be linear in the adjustable parameters.
In Lagrange interpolation we pass a polynomial of lowest possible degree through \(n \) given data points. Since \(n \) parameters are needed, the degree required is \((n-1) \) so that

\[
\ell_{(n-1)}(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{(n-2)} x^{(n-2)} + a_{(n-1)} x^{(n-1)}
\]

(9)

The straightforward approach of finding the coefficients is to substitute Eq. (9) in Eq. (8). We obtain

\[
y_i = a_0 + a_1 x_i + a_2 x_i^2 + \ldots + a_{(n-2)} x_i^{(n-2)} + a_{(n-1)} x_i^{(n-1)} \quad i = 1, 2, 3, \ldots n
\]

(10)

which represents a set of \(n \) linear algebraic equations in \(n \) unknowns \(a_0, a_1, \ldots, a_{(n-1)} \) since the \(x_i \) and \(y_i \) are known.

This set can be solved by standard linear equation solvers, but this is not a good way to proceed, because Eq. (10) needs a computer if \(n \) is larger than 4 or 5.

- Eq. (10) becomes ill-conditioned for \(n \) larger than 4-5
- And finally it is better to have a closed form expression in any case.

By ill-conditioned we mean that the solution of the system of equations is very sensitive to small changes in the data. When such a system is solved, small errors are magnified and result may contain large errors.

Thus we seek an alternative approach.

From Eq. (10) we see that the coefficients \(a_0, a_1, \ldots, a_{(n-1)} \) must be linear combination of the \(y_i \).

The most general expression that is linear in each of the \(y_i \) and a polynomial of degree \((n-1) \) in \(x \) is
\[f_{n-1}(x) = \sum_{i=1}^{n} L_i(x)y_i \] (11)

where the \(L_i(x) \) are polynomials of degree \((n-1)\). Thus \(f_{(n-1)}(x) \) must have this form.

The problem is to find \(L_i(x) \)

Let \(L_i(x_j) = \delta_{ij} \quad j = 1, 2, \ldots n \) (12)

where \(\delta_i = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \) (13)

\[L_i(x_j) = a_j (x - x_1)(x - x_2) \ldots (x - x_{(n-1)}) (x - x_n) \] (14)

or can be abbreviated as

\[L_i(x_j) = a_j \prod_{j \neq i}^{n} (x - x_j) \] (15)

and

\[a_j = \frac{1}{\prod_{j \neq i}^{n} (x_i - x_j)} \] (16)

Then the Lagrange polynomials are

\[L_i(x) = \prod_{j \neq i}^{n} \frac{x - x_j}{x_i - x_j} \] (17)

and the interpolating polynomial becomes

\[f_{n-1}(x) = \sum_{i=1}^{n} L_i(x)f(x_i) \] (18)

Example: Find a quadratic polynomial using the three given points

\((x_i, y_i) \quad i = 1, 2, 3\) \quad \(x = [-2, 0, 2]\) \quad \(y = [4, 2, 8]a\)

We then have \(n = 3\)

\[f_2(x) = \sum_{i=1}^{3} L_i(x)y_i \]
\[= L_1 y_1 + L_2 y_2 + L_3 y_3 \]

Now

\[L_1 (x) = \left(\frac{x - x_2}{x_1 - x_2} \right) \left(\frac{x - x_3}{x_1 - x_3} \right) = \left(\frac{x - 0}{2 - 0} \right) \left(\frac{x - 2}{2 - 2} \right) \]

\[L_2 (x) = \left(\frac{x - x_1}{x_2 - x_1} \right) \left(\frac{x - x_3}{x_2 - x_3} \right) = \left(\frac{x - (-2)}{0 - (-2)} \right) \left(\frac{x - 2}{0 - 2} \right) \]

\[L_3 (x) = \left(\frac{x - x_2}{x_3 - x_2} \right) \left(\frac{x - x_1}{x_3 - x_1} \right) = \left(\frac{x - (-2)}{2 - (-2)} \right) \left(\frac{x - 0}{2 - 0} \right) \]

\[f(x) = \frac{x(x - 2)}{8} + \frac{(x + 2)(x - 2)}{-4} + \frac{x(x + 2)}{8} - x^2 + x + 2 \]
function c = Lagrange_coef(x, y)
% Calculate coefficients of Lagrange Functions
n = length(x);
for k = 1:n
 d(k) = 1;
 for i = 1:n
 if i ~= k
 d(k) = d(k) * (x(k) - x(i));
 end
 c(k) = y(k) / d(k);
 end
end

function p = Lagrange_Eval(t, x, c)
% Evaluate Lagrange interpolation polynomial at x = t
m = length(x);
for i = 1:length(t),
 p(i) = 0;
 for j = 1:m
 N(j) = 1;
 for k = 1:m
 if j ~= k
 N(j) = N(j) * (t(i) - x(k));
 end
 end
 p(i) = p(i) + N(j) * c(j);
 end
end