Polynomial Algebra

Let \(f(x) = 5x^2 - 7x^2 + 9x + 11 \)
\(g(x) = 6x^2 + 3 \)

- **Matlab representation:**
 \[
 f = [5, -7, 9, 11] \quad \text{cubic}
 \]
 \[
 g = [6, 0, 3] \quad \text{quadratic}
 \]
 \[
 \Rightarrow g = [0, g] \quad \text{cubic, highest coefficient zero}
 \]

- \(f \pm g = [5\pm0, -7\pm6, 9\pm0, 11\pm3] \)
 \[
 f \pm g = [5, -1, 9, 14, 8]
 \]
 \[
 \Rightarrow f+g = 5x^2 - x^2 + 9x + 14
 \]

- \(\text{conv}(f, g) = \text{product of 2 polynomials} \)

- \([q, r] = \text{deconv}(\text{num}, \text{den}) = \text{division f/g} \)
 \[
 q = \text{quotient}
 \]
 \[
 r = \text{remainder}
 \]
 Note: For addition and subtraction, the polynomials must be of the same order.
 For multiplication or division, the order can be different.

- **Evaluation of a polynomial**
 \[
 \text{polyval}(f, x) \text{ or } \text{polyval}(g, x)
 \]
 \[
 \text{if } x = [0, .5, 10] \quad \text{array of values of } x
 \]
 \[
 \text{polyval}(f, x) \text{ will compute the polynomial at each value of } x \text{ of that array}
 \]

- **Roots of a polynomial equation, } f(x) = 0 \)
 \[
 rt = \text{root}(f)
 \]

Example

The following equation appears in structural vibrations:
\[
(\alpha-f^2)[(2\alpha-f^2)(\alpha-x)] + \alpha^2 f^2 - 2\alpha^3 = 0
\]
where \(\alpha \) is the natural frequency \(k/(4\pi^2 m) \)
\[
k = \text{spring constant}
\]
\[
m = \text{mass}
\]
Clearly this equation can be treated in two different ways: (i) a cubic in \(f^2 \), (ii) a 6th order equation. No matter how it is coded, the solution will be the same.

- A cubic in \(f^2 = x \Rightarrow f = \pm \sqrt{x} \)
 \[
 P_1 = \alpha - x
 \]
 \[
 P_2 = 2\alpha - x
 \]
 \[
 P_3 = \alpha^2 x - 2\alpha^3
 \]
 \[
 \Rightarrow P_1[P_2 - \alpha^2] + P_3 = 0
 \]
Matlab code 1: \(\alpha = k/(4\pi^2 m) \)
- \(P_1 = [-1, \alpha] \)
- \(P_2 = [-1, 2\alpha] \)
- \(P_3 = [\alpha^2, -2\alpha^3] \)
- \(P_4 = \text{conv}(P_2, P_2)[0, 0, \alpha^2] \)
- \(P_5 = \text{conv}(P_1, P_4)[0, 0, P_3] \)
- \(rt = \text{root}(P_5) \)
- \(f_1 = \text{sqrt}(rt) \)
- \(f_2 = -\text{sqrt}(rt) \)

Matlab code 2: \(\alpha = k/(4\pi^2 m) \)
- \(P_1 = [-1, 0, \alpha] \)
- \(P_2 = [-1, 0, 2\alpha] \)
- \(P_3 = [\alpha^2, 0, -2\alpha^3] \)
- \(P_4 = \text{conv}(P_2, P_2)[0, 0, 0, \alpha^2] \)
- \(P_5 = \text{conv}(P_1, P_4)[0, 0, 0, P_3] \)
- \(rt = \text{root}(P_5) \)

HW: Let \(k = 4 \times 10^6 \) Newtons/m
\(m = 5000 \) kg

Write a Matlab code to find the roots of the equation.